Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
大跨空间结构风荷载的取值是该类结构抗风设计关注重点,通常借助风洞试验或数值风洞确定,但其费用高周期长等特点限制其广泛应用.机器学习方法近年受到关注,逐渐应用于结构的风荷载预测并取得了不错的效果.利用核主成分分析(Kernel Prin...大跨空间结构风荷载的取值是该类结构抗风设计关注重点,通常借助风洞试验或数值风洞确定,但其费用高周期长等特点限制其广泛应用.机器学习方法近年受到关注,逐渐应用于结构的风荷载预测并取得了不错的效果.利用核主成分分析(Kernel Principal Component Analysis,KPCA)对数据进行降维处理,借助可以集成学习的XGBoost机器学习模型,采用十折交叉验证对超参数进行选择,编写了基于机器学习的大跨空间结构风荷载预测程序.通过对多个已有工程项目风洞试验结果的学习训练和预测结果比对,证明该方法具有处理数据能力较强、预测效率较高及泛化能力较强等特点.随机选取未参与模型训练的风向角下数据进行模型准确性验证,结果表明模型的R2值均达到0.9左右,预测值与试验值较为接近,体型系数在迎风区的预测精度略低于背风区,而极值风压则在背风区的预测精度好于迎风区.展开更多
以2014—2019年珲春地区红外相机拍摄的东北虎数据为基础,基于XGBoost算法构建了虎出没区域风险等级划分模型。由模型检验可知:模型的准确率为93.51%,精确率为93.85%,召回率为93.08%,F1值为93.31%,Cohen s Kappa统计系数为90.2%。研究...以2014—2019年珲春地区红外相机拍摄的东北虎数据为基础,基于XGBoost算法构建了虎出没区域风险等级划分模型。由模型检验可知:模型的准确率为93.51%,精确率为93.85%,召回率为93.08%,F1值为93.31%,Cohen s Kappa统计系数为90.2%。研究结果表明:基于XGBoost算法构建的人-虎共存区域风险等级划分模型分类效果好、预测准确度高,运用该模型对人-虎共存区域进行风险等级划分是可行的。展开更多
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
文摘大跨空间结构风荷载的取值是该类结构抗风设计关注重点,通常借助风洞试验或数值风洞确定,但其费用高周期长等特点限制其广泛应用.机器学习方法近年受到关注,逐渐应用于结构的风荷载预测并取得了不错的效果.利用核主成分分析(Kernel Principal Component Analysis,KPCA)对数据进行降维处理,借助可以集成学习的XGBoost机器学习模型,采用十折交叉验证对超参数进行选择,编写了基于机器学习的大跨空间结构风荷载预测程序.通过对多个已有工程项目风洞试验结果的学习训练和预测结果比对,证明该方法具有处理数据能力较强、预测效率较高及泛化能力较强等特点.随机选取未参与模型训练的风向角下数据进行模型准确性验证,结果表明模型的R2值均达到0.9左右,预测值与试验值较为接近,体型系数在迎风区的预测精度略低于背风区,而极值风压则在背风区的预测精度好于迎风区.
文摘以2014—2019年珲春地区红外相机拍摄的东北虎数据为基础,基于XGBoost算法构建了虎出没区域风险等级划分模型。由模型检验可知:模型的准确率为93.51%,精确率为93.85%,召回率为93.08%,F1值为93.31%,Cohen s Kappa统计系数为90.2%。研究结果表明:基于XGBoost算法构建的人-虎共存区域风险等级划分模型分类效果好、预测准确度高,运用该模型对人-虎共存区域进行风险等级划分是可行的。