期刊文献+
共找到87,039篇文章
< 1 2 250 >
每页显示 20 50 100
Winter wheat yield improvement by genetic gain across different provinces in China 被引量:1
1
作者 Wei Chen Jingjuan Zhang Xiping Deng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期468-483,共16页
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist... The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly. 展开更多
关键词 genetic gain winter wheat yield yield components
下载PDF
Effect of Planting Date on Yield and Yield Components of Grain Sorghum Hybrids
2
作者 Bandiougou Diawara Sory Diallo +2 位作者 Brahima Traore Scott Staggenbord Vara Prasad 《American Journal of Plant Sciences》 CAS 2024年第5期387-402,共16页
In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to ... In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to avoid severe environmental stresses during these sensitive stages. The hypothesis of the study was that late May planting improves grain sorghum yield and yield components compared with late June planting. The objectives of this research were to investigate the influence of planting dates yield and yield components of different grain sorghum hybrids, and to determine the optimal planting date and hybrid combination for maximum biomass and grains production. Three sorghum hybrids (early, medium, and late maturing) were planted in late May and late June without irrigation in Kansas at Manhattan/Ashland Bottom Research Station, and Hutchinson in 2010;and at Manhattan/North Farm and Hutchinson in 2011. Data on dry matter production, yield and yield components were collected. Grain yield and yield components were influenced by planting date depending on environmental conditions. At Manhattan (2010), greater grain yield, number of heads per plant, were obtained with late-June planting compared with late May planting, while at Hutchinson (2010) greater yield was obtained with late May planting for all hybrids. The yield component most affected at Hutchinson was the number of kernels∙panicle<sup>−1</sup> and plant density. Late-May planting was favorable for late maturing hybrid (P84G62) in all locations. However, the yield of early maturing hybrid (DKS 28-05) and medium maturing hybrid (DKS 37-07) was less affected by delayed planting. The effects of planting dates on yield and yield components of grain sorghum hybrids were found to be variable among hybrid maturity groups and locations. 展开更多
关键词 Sorghum [Sorghum bicolor (L.) Moench] Grain yield yield Components
下载PDF
Effect of Different Mulch Materials on Yield and Nutrition Profile of Common Capsicum (Capsicum annuum) Cultivars in Bangladesh
3
作者 Prince Biswas Md. Abubakar Siddik +5 位作者 Md. Shariful Islam Mohammad Zahir Ullah Md. Shamsuzzoha Hasina Akter Akm Maksudul Alam Mominul Hauque Robin 《Agricultural Sciences》 2024年第2期246-255,共10页
Capsicum is a nutritious vegetable and its cultivation in farms is getting popular in Bangladesh. Although many efforts have lain to explore better yielding and nutritionally rich cultivars with suitable modern cultiv... Capsicum is a nutritious vegetable and its cultivation in farms is getting popular in Bangladesh. Although many efforts have lain to explore better yielding and nutritionally rich cultivars with suitable modern cultivation techniques but still have to find the desired outcome. Thus, it’s necessary to conduct further research to identify the high-yielding and nutritious capsicum cultivars in Bangladesh. An experiment was conducted from July 2021 to June 2022 at the Bangladesh Institute of Research and Training on Applied Nutrition (BIRTAN) research field with three cultivars of capsicum: B<sub>0</sub> = California Wonder, B<sub>1</sub> = BARI Misti Morich-1 and B<sub>2</sub> = BARI Misti Morich-2 and three mulching: T<sub>0</sub> = No mulching, T<sub>1</sub> = Water hyacinth, T<sub>2</sub> = Poly Mulching in randomized complete block design with three replications to identify better quality capsicum cultivar and suitable mulching material. Among cultivars the BARI Misti Morich-2 (B<sub>2</sub>) showed increased agronomic parameters like number of branches and effective branches per plant, leaves length and width, consequently yield and yield contributing traits were also enhanced like fruits per plant, fruit length, fruit diameter and yield per plant (25.97%, 4.54%, 3.64% and 21.43%, respectively). Poly Mulching (T<sub>2</sub>) increased agronomic traits, yield traits and yield (0.61 kg) than BARI Misti Morich-1 (T<sub>1</sub>). The combined effect of B<sub>2</sub>T<sub>2</sub> increased the number of branches per plant, effective branches per plant, leaves length and breadth by 40%, 90%, 15.57% and 26.22%, respectively, hence resulting in an increased yield of 20%. BARI Misti Morich-2 cultivar showed an increase in Fe, Zn and Vitamin-C content of 26.24% and 23.10%, 8.82% and 5.14%, and 6.03% and 5.74% than B0 and B1 cultivars, respectively. Therefore, BARI Misti Morich-2 exhibited the improved agronomic, yield and nutritional traits of capsicum under poly mulching among other cultivars in Bangladesh. 展开更多
关键词 Capsicum Cultivars Mulch Materials yield yield Contributing Traits Nutritional Quality
下载PDF
Growth, Development and Yield of Kenaf as Affected by Planting Dates and N Fertilization
4
作者 Julius Yirzagla Peter Quandahor +5 位作者 Iddrisu Yahaya Olivia Aguriboba Akanbelum Listowell Aditwin Akologo John Bokaligidi Lambon Abdul-Wahab M. Imoro Kwadwo Gyasi Santo 《Open Journal of Applied Sciences》 2024年第3期707-720,共14页
Kenaf (Hibiscus cannabinus L) consists of various beneficial components like stalks, seeds, leaves, fibers, oils, proteins, allelopathic chemicals, and fiber strands, among other things. Despite the numerous uses of t... Kenaf (Hibiscus cannabinus L) consists of various beneficial components like stalks, seeds, leaves, fibers, oils, proteins, allelopathic chemicals, and fiber strands, among other things. Despite the numerous uses of the crop, there is little or no information on optimum agronomic practices such as planting date and N fertilization of the crop in the Upper East Region (UER) of Ghana where the crop is widely cultivated by smallholder farmers. Field experiments were therefore carried out in 2020 and repeated during the 2021 cropping season in the study area. The objective of the study was to determine appropriate planting date and N fertilization for increased kenaf productivity. In each year, the treatments consisted of 3 × 5 factorial combinations of three planting dates (1<sup>st</sup> July, 7<sup>th</sup> July and 14<sup>th</sup> July) and five levels of N (0, 20, 40, 60 and 80 kg/ha) replicated three times. The design of the experiment was a split-plot with the N fertilizer as the main plot and the planting date assigned to sub plot. The results showed that, planting kenaf in early (1<sup>st</sup>) July or N fertilization at the rate of 60 kg/ha increased plant density, stem height, stem diameter, dry bast and core yields in both cropping seasons. 展开更多
关键词 GROWTH Fibres Bast yield Core yield
下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:2
5
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
下载PDF
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions 被引量:2
6
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density MAIZE grain yield N uptake compensation effect
下载PDF
Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage 被引量:1
7
作者 Lingxiao Zhu Hongchun Sun +8 位作者 Ranran Wang Congcong Guo Liantao Liu Yongjiang Zhang Ke Zhang Zhiying Bai Anchang Li Jiehua Zhu Cundong Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3387-3405,共19页
The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechani... The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method. 展开更多
关键词 COTTON DROUGHT MELATONIN root morphology root physiology yield
下载PDF
Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil 被引量:1
8
作者 Minghui Cao Yan Duan +6 位作者 Minghao Li Caiguo Tang Wenjie Kan Jiangye Li Huilan Zhang Wenling Zhong Lifang Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期698-710,共13页
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif... Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies. 展开更多
关键词 FERTILIZATION manure substitution soil fertility maize yield bacterial community
下载PDF
Yields,growth and water use under chemical topping in relations to row configuration and plant density in drip-irrigated cotton 被引量:1
9
作者 Wang Xuejiao Hu Yanping +10 位作者 Ji Chunrong Chen Yongfan Sun Shuai Zhang Zeshan Zhang Yutong Wang Sen Yang Mingfeng Ji Fen Guo Yanyun Li Jie Zhang Lizhen 《Journal of Cotton Research》 CAS 2024年第2期123-136,共14页
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m... Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient. 展开更多
关键词 yield components Fiber quality TRANSPIRATION Water use efficiency Heat ratio method(HRM)
下载PDF
Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol:Results from a 20-year field experiment
10
作者 Song Wan Yongxin Lin +3 位作者 Hangwei Hu Milin Deng Jianbo Fan Jizheng He 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2434-2445,共12页
Population growth and growing demand for livestock products produce large amounts of manure,which can be harnessed to maintain soil sustainability and crop productivity.However,the impacts of excessive manure applicat... Population growth and growing demand for livestock products produce large amounts of manure,which can be harnessed to maintain soil sustainability and crop productivity.However,the impacts of excessive manure application on crop yields,nitrogen(N)-cycling processes and microorganisms remain unknown.Here,we explored the effects of 20-year of excessive rates(18 and 27 Mg ha^(–1)yr^(–1))of pig manure application on peanut crop yields,soil nutrient contents,N-cycling processes and the abundance of N-cycling microorganisms in an acidic Ultisol in summer and winter,compared with none and a regular rate(9 Mg ha^(–1)yr^(–1))of pig manure application.Long-term excessive pig manure application,especially at the high-rate,significantly increased soil nutrient contents,the abundance of N-cycling functional genes,potential nitrification and denitrification activity,while it had a weaker effect on peanut yield and plant biomass.Compared with manure application,seasonality had a much weaker effect on N-cycling gene abundance.Random forest analysis showed that available phosphorus(AP)content was the primary predictor for N-cycling gene abundance,with significant and positive associations with all tested N-cycling genes.Our study clearly illustrated that excessive manure application would increase N-cycling gene abundance and potential N loss with relatively weak promotion of crop yields,providing significant implications for sustainable agriculture in the acidic Ultisols. 展开更多
关键词 DENITRIFICATION manure amendment NITRIFICATION N-cycling functional genes peanut yields
下载PDF
Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis
11
作者 Yonghui Fan Boya Qin +8 位作者 Jinhao Yang Liangliang Ma Guoji Cui Wei He Yu Tang Wenjing Zhang Shangyu Ma Chuanxi Ma Zhenglai Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期536-550,共15页
Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultiv... Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield. 展开更多
关键词 wheat asymmetric warming dry matter accumulation and translocation STARCH yield
下载PDF
J-family genes redundantly regulate flowering time and increase yield in soybean
12
作者 Haiyang Li Zheng Chen +10 位作者 Fan Wang Hongli Xiang Shuangrong Liu Chuanjie Gou Chao Fang Liyu Chen Tiantian Bu Fanjiang Kong Xiaohui Zhao Baohui Liu Xiaoya Lin 《The Crop Journal》 SCIE CSCD 2024年第3期944-949,共6页
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma... Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding. 展开更多
关键词 SOYBEAN Flowering time yield J-family genes
下载PDF
Molecular Mechanism of Rice Necrotic Lesion for Optimized Yield and Disease Resistance
13
作者 HOU Xinyue WANG Yuping +1 位作者 QIAN Qian REN Deyong 《Rice science》 SCIE CSCD 2024年第3期285-299,共15页
How to balance rice resistance and yield is an important issue in rice breeding.Plants with mutated necrotic lesion genes often have persistent broad-spectrum resistance,but this broad-spectrum resistance usually come... How to balance rice resistance and yield is an important issue in rice breeding.Plants with mutated necrotic lesion genes often have persistent broad-spectrum resistance,but this broad-spectrum resistance usually comes at the expense of yield.Currently,many necrotic lesion mutants in rice have been identified,and these genes are involved in disease resistance pathways.This review provides a detailed introduction to the characteristics,classification,and molecular mechanisms of necrotic lesion formation.Additionally,we review the molecular regulatory pathways of genes involved in rice disease resistance.Concurrently,we summarize the relationship between resistance and yield in rice using newly developed gene editing methods.We discuss a rational and precise breeding strategy to better utilize molecular design technology for breeding disease-resistant and high-yield rice varieties. 展开更多
关键词 RICE necrotic lesion regulation mechanism high yield high resistance
下载PDF
Salinity Stress Deteriorates Grain Yield and Increases 2-Acetyl-1-Pyrroline Content in Rice
14
作者 WEI Huanhe MA Weiyi +9 位作者 ZHANG Xiang ZUO Boyuan GENG Xiaoyu WANG Lulu ZHU Wang CHEN Yinglong HUO Zhongyang XU Ke MENG Tianyao DAI Qigen 《Rice science》 SCIE CSCD 2024年第4期371-374,I0015-I0021,共11页
Salinity stress greatly impacts rice grain yield and quality, as well as the 2-acetyl-1-pyrroline(2-AP) content in grains. The present study was conducted with Nanjing 9108(NJ9108, conventional japonica rice) and Wenl... Salinity stress greatly impacts rice grain yield and quality, as well as the 2-acetyl-1-pyrroline(2-AP) content in grains. The present study was conducted with Nanjing 9108(NJ9108, conventional japonica rice) and Wenliangyou 669(WLY669, indica hybrid rice) in the fields with non-salinity(NS), low salinity(LS), and high salinity(HS) stresses in 2021 and 2022. 展开更多
关键词 SALINITY yield erior
下载PDF
Integrated assessment of yield,nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production
15
作者 Zijuan Ding Ren Hu +4 位作者 Yuxian Cao Jintao Li Dakang Xiao Jun Hou Xuexia Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3186-3199,共14页
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of... Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss. 展开更多
关键词 ratoon rice controlled-release urea yield nitrogen use efficiency economic benefit
下载PDF
Magnesium fertilizer application increases peanut growth and pod yield under reduced nitrogen application in southern China
16
作者 Yu Gao Ruier Zeng +6 位作者 Suzhe Yao Ying Wang Jianguo Wang Shubo Wan Wei Hu Tingting Chen Lei Zhang 《The Crop Journal》 SCIE CSCD 2024年第3期915-926,共12页
This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry ma... This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China. 展开更多
关键词 PEANUT Magnesium yield Reduced nitrogen application rate
下载PDF
The microbial community,nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat-maize double-cropping systems
17
作者 Zeli Li Fuli Fang +10 位作者 Liang Wu Feng Gao Mingyang Li Benhang Li Kaidi Wu Xiaomin Hu Shuo Wang Zhanbo Wei Qi Chen Min Zhang Zhiguang Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3592-3609,共18页
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi... Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients. 展开更多
关键词 potassium fertilizer gradient microbial community wheat-maize double cropping climate change yield
下载PDF
Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model
18
作者 CHEN Jiazhen KASIMU Alimujiang +3 位作者 REHEMAN Rukeya WEI Bohao HAN Fuqiang ZHANG Yan 《Journal of Arid Land》 SCIE CSCD 2024年第6期852-874,共23页
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research ... To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management. 展开更多
关键词 PLUS model InVEST model Bosten Lake Basin water yield water conservation land-use simulation Geodetector
下载PDF
Isotopic dependence of the yield ratios of light fragments from different projectiles and their unified neutron skin thicknesses
19
作者 Ting-Zhi Yan Shan Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期228-236,共9页
The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(ever... The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(every third isotopes)+112 Sn for full reduced impact parameters using the isospin-dependent quantum molecular dynamics(IQMD)model.The neutron and proton density distributions and root-mean-square radii of the reaction systems were obtained using the Skyrme-Hartree-Fock model,which was used for the phase space initialization of the projectile and target in IQMD.We defined the unified neutron skin thickness asΔRnp=<r^(2)>^(1∕2) n−<r^(2)>^(1∕2)p,which was negative for neutron-deficient nuclei.The unifiedΔRnp values for nuclei with the same relative neutron excess from different isotopic chains were nearly equal,except for extreme neutron-rich isotopes,which is a type of scaling behavior.The yield ratios of the three isotopic chain-induced reactions,which depended on the reduced impact parameter and unified neutron skin thickness,were studied.The results showed that both R(n/p)and R(^(3)H∕^(3)He)decreased with a reduced impact parameter for extreme neutron-deficient isotopes;however,they increased with reduced impact parameters for extreme neutron-rich isotopes,and increased with theΔRnp of the projectiles for all reduced impact parameters.In addition,a scaling phenomenon was observed betweenΔR np and the yield ratios in peripheral colli-sions from different isotopic chain projectiles(except for extreme neutron-rich isotopes).Thus,R(n/p)and R(^(3)H∕^(3)He)from peripheral collisions were suggested as experimental probes for extracting the neutron or proton skin thicknesses of non-extreme neutron-rich nuclei from different isotopic chains. 展开更多
关键词 Exotic nuclei Unified neutron skin thickness yield ratios IQMD
下载PDF
Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau,China
20
作者 Qilong Song Jie Zhang +3 位作者 Fangfang Zhang Yufang Shen Shanchao Yue Shiqing Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1671-1684,共14页
Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the ef... Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau. 展开更多
关键词 maize yield N management economic optimal N rate Loess Plateau
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部