Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewa...Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewater containing Cr(Ⅵ)(2.6-5.2 mg·L^(-1)),Cu^(2+)(2.7-5.4 mg·L^(-1)),and Ni^(2+)(0.2705-0.541 mg·L^(-1))ions at pH of 8.8-9.1 and 20-60℃.The as-synthesized sodium trititanate nanorods were characterized by XRD,HRTEM,N2 adsorption/desorption,SEM,EDX,and zeta potential techniques.The concentrations of heavy metal ions in wastewater were analyzed by ICP technique.After in situ oxidative adsorption treatment under the concentrations of 25 g·L^(-1) for sodium hypochlorite and 125 mg·L^(-1) for sodium trititanate nanorods at 60℃ for 5 h,the heavy metal ion concentrations could be reduced from initial value of 2.6 to final value of 1.92 mg·L^(-1) for Cr(Ⅵ),3.6 to 0.17 mg·L^(-1) for Cu^(2+),and from 0.2705 to 0.097 mg·L^(-1) for Ni^(2+),respectively.Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions could be effectively removed by the in situ oxidative adsorption method.The in situ oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are satisfactorily simulated by the pseudo-second order adsorption kinetics and Langmuir adsorption isotherm,respectively.Adsorption thermodynamics analyses reveal that the oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are spontaneous and endothermic.The oxidation degree of metalcontained complexes influences the values of thermodynamics functions.展开更多
To degrade the organic compounds in the electroplating wastewater,magnetic field was tentatively introduced into electrocatalytic oxidation on Ti-PbO2 anode.The magnetic field assisted electrocatalytic oxidation can p...To degrade the organic compounds in the electroplating wastewater,magnetic field was tentatively introduced into electrocatalytic oxidation on Ti-PbO2 anode.The magnetic field assisted electrocatalytic oxidation can promote anion movement and the generation of active species,resulting more organic compounds to be oxidized and degraded.Oxidation parameters such as treatment time,current density and initial pH of the wastewater were systematically discussed and optimized.The mineralization of organic compounds is improved by over 15% under a magnetic density of 22 mT while the current density is 50 A/m2,pH is 1.8 and the reaction time is 1.5 h.The results indicate that the magnetic field assisted electrocatalytic oxidation has considerable potential in electroplating wastewater treatment.展开更多
The appropriate condition and scheme of removing cadmium from electroplating wastewater were investigated by adsorption-precipitation method using waste saccharomyces cerevisiae(WSC) as sorbent. Effect factors on bios...The appropriate condition and scheme of removing cadmium from electroplating wastewater were investigated by adsorption-precipitation method using waste saccharomyces cerevisiae(WSC) as sorbent. Effect factors on biosorption of cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae and precipitation process of waste saccharomyces cerevisiae after adsorbing cadmium were studied. The results show that removal rate of cadmium is over 88% after 30 min adsorbing under the condition of cadmium concentration 26 mg/L, the dosage of waste saccharomyces cerevisiae 16.25 g/L, temperature 18 ℃, pH 6.0 and precipitation time 4 h. Biosorption-precipitation method is effective to remove cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae. The SEM, infrared spectroscopy and Zeta-potential of the cells show that chemical chelating is the main adsorption form; electrostatic attraction, hydrogen bonding and van der Waals force all function in adsorption process; and ―NH2―,―C=O―,―C=O―NH―,―CH3, ―OH are the main adsorption groups.展开更多
To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/ electrodialysis) system, the relation between concentration of Cr (Ⅵ) and conductivity of water is investigate...To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/ electrodialysis) system, the relation between concentration of Cr (Ⅵ) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.展开更多
An improved configuration of the membrane stack was adopted in the electrodeionization (EDI) cell to prevent precipitation of bivalent metal hydroxide during the running. The operational parameters that influenced t...An improved configuration of the membrane stack was adopted in the electrodeionization (EDI) cell to prevent precipitation of bivalent metal hydroxide during the running. The operational parameters that influenced the removal of copper ions from the dilute solution were optimized. The result showed that a moderate decrease in the inlet pH value and a moderate increase in the applied voltage could achieve a better removal effect. The steady process of electroplating wastewater treatment could be achieved with a removal efficiency of more than 99.5% and an enrichment factor of 5-14. The concentration of copper in purified water was less than 0.23 mg/L. This demonstrated the applicability of recovering heavy metal ions and purified water from electroplating effluent for industrial reuse.展开更多
Effective recovery of high-value heavy metals from electroplating wastewater is of great significance,but recovering nickel ions from real electroplating wastewater as nickel sheet has not been reported.In this study,...Effective recovery of high-value heavy metals from electroplating wastewater is of great significance,but recovering nickel ions from real electroplating wastewater as nickel sheet has not been reported.In this study,the pilot-scale fixed-bed resin adsorption was conducted to recover Ni(Ⅱ)ions from real nickel plating wastewater,and then the concentrated Ni(Ⅱ)ions in the regenerated solution were reduced to nickel sheet via electrodeposition.A commercial cation-exchange resin was selected and the optimal resin adsorption and regeneration conditions were investigated.The resin exhibited an adsorption capacity of 63 mg/g for Ni(Ⅱ)ions,and the average amount of treated water was 84.6 bed volumes(BV)in the pilot-scale experiments.After the adsorption by two ion-exchange resin columns in series and one chelating resin column,the concentrations of Ni(Ⅱ)in the treated wastewater were below 0.1 mg/L.After the regeneration of the spent resin using 3 BVof 4%(w/w)HC1 solution,1.5 BV of concentrated neutral nickel solution(>30 g/L)was obtained and used in the subsequent electrodeposition process.Using the aeration method,alkali and water required in resin activation process were greatly reduced to 2 BV and 3 BV,respectively.Under the optimal electrodeposition conditions,95.6%of Ni(Ⅱ)in desorption eluent could be recovered as the elemental nickel on the cathode,llie total treatment cost for the resin adsorption and regeneration as well as the electrodeposition was calculated.展开更多
With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environmen...With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.展开更多
基金supported by the research funds from the Bureau of Danyang Science and Technology,China(SF201803)the Department of Liaoning Science and Technology,China(2021JH1/10400063).
文摘Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewater containing Cr(Ⅵ)(2.6-5.2 mg·L^(-1)),Cu^(2+)(2.7-5.4 mg·L^(-1)),and Ni^(2+)(0.2705-0.541 mg·L^(-1))ions at pH of 8.8-9.1 and 20-60℃.The as-synthesized sodium trititanate nanorods were characterized by XRD,HRTEM,N2 adsorption/desorption,SEM,EDX,and zeta potential techniques.The concentrations of heavy metal ions in wastewater were analyzed by ICP technique.After in situ oxidative adsorption treatment under the concentrations of 25 g·L^(-1) for sodium hypochlorite and 125 mg·L^(-1) for sodium trititanate nanorods at 60℃ for 5 h,the heavy metal ion concentrations could be reduced from initial value of 2.6 to final value of 1.92 mg·L^(-1) for Cr(Ⅵ),3.6 to 0.17 mg·L^(-1) for Cu^(2+),and from 0.2705 to 0.097 mg·L^(-1) for Ni^(2+),respectively.Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions could be effectively removed by the in situ oxidative adsorption method.The in situ oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are satisfactorily simulated by the pseudo-second order adsorption kinetics and Langmuir adsorption isotherm,respectively.Adsorption thermodynamics analyses reveal that the oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are spontaneous and endothermic.The oxidation degree of metalcontained complexes influences the values of thermodynamics functions.
基金Project(2008ZX07101-006-09) supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China
文摘To degrade the organic compounds in the electroplating wastewater,magnetic field was tentatively introduced into electrocatalytic oxidation on Ti-PbO2 anode.The magnetic field assisted electrocatalytic oxidation can promote anion movement and the generation of active species,resulting more organic compounds to be oxidized and degraded.Oxidation parameters such as treatment time,current density and initial pH of the wastewater were systematically discussed and optimized.The mineralization of organic compounds is improved by over 15% under a magnetic density of 22 mT while the current density is 50 A/m2,pH is 1.8 and the reaction time is 1.5 h.The results indicate that the magnetic field assisted electrocatalytic oxidation has considerable potential in electroplating wastewater treatment.
基金Project(50174014) supported by the National Natural Science Foundation of ChinaProject(20042021) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2006223002) supported by the High Science and Technology Plan of Liaoning Province,China
文摘The appropriate condition and scheme of removing cadmium from electroplating wastewater were investigated by adsorption-precipitation method using waste saccharomyces cerevisiae(WSC) as sorbent. Effect factors on biosorption of cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae and precipitation process of waste saccharomyces cerevisiae after adsorbing cadmium were studied. The results show that removal rate of cadmium is over 88% after 30 min adsorbing under the condition of cadmium concentration 26 mg/L, the dosage of waste saccharomyces cerevisiae 16.25 g/L, temperature 18 ℃, pH 6.0 and precipitation time 4 h. Biosorption-precipitation method is effective to remove cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae. The SEM, infrared spectroscopy and Zeta-potential of the cells show that chemical chelating is the main adsorption form; electrostatic attraction, hydrogen bonding and van der Waals force all function in adsorption process; and ―NH2―,―C=O―,―C=O―NH―,―CH3, ―OH are the main adsorption groups.
文摘To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/ electrodialysis) system, the relation between concentration of Cr (Ⅵ) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.
基金Project (No. Z505060) supported by the Natural Science Foundation of Zhejiang Province, China
文摘An improved configuration of the membrane stack was adopted in the electrodeionization (EDI) cell to prevent precipitation of bivalent metal hydroxide during the running. The operational parameters that influenced the removal of copper ions from the dilute solution were optimized. The result showed that a moderate decrease in the inlet pH value and a moderate increase in the applied voltage could achieve a better removal effect. The steady process of electroplating wastewater treatment could be achieved with a removal efficiency of more than 99.5% and an enrichment factor of 5-14. The concentration of copper in purified water was less than 0.23 mg/L. This demonstrated the applicability of recovering heavy metal ions and purified water from electroplating effluent for industrial reuse.
文摘Effective recovery of high-value heavy metals from electroplating wastewater is of great significance,but recovering nickel ions from real electroplating wastewater as nickel sheet has not been reported.In this study,the pilot-scale fixed-bed resin adsorption was conducted to recover Ni(Ⅱ)ions from real nickel plating wastewater,and then the concentrated Ni(Ⅱ)ions in the regenerated solution were reduced to nickel sheet via electrodeposition.A commercial cation-exchange resin was selected and the optimal resin adsorption and regeneration conditions were investigated.The resin exhibited an adsorption capacity of 63 mg/g for Ni(Ⅱ)ions,and the average amount of treated water was 84.6 bed volumes(BV)in the pilot-scale experiments.After the adsorption by two ion-exchange resin columns in series and one chelating resin column,the concentrations of Ni(Ⅱ)in the treated wastewater were below 0.1 mg/L.After the regeneration of the spent resin using 3 BVof 4%(w/w)HC1 solution,1.5 BV of concentrated neutral nickel solution(>30 g/L)was obtained and used in the subsequent electrodeposition process.Using the aeration method,alkali and water required in resin activation process were greatly reduced to 2 BV and 3 BV,respectively.Under the optimal electrodeposition conditions,95.6%of Ni(Ⅱ)in desorption eluent could be recovered as the elemental nickel on the cathode,llie total treatment cost for the resin adsorption and regeneration as well as the electrodeposition was calculated.
基金supported by the National Natural Science Foundation of China (No.52364022)the Natural Science Foundation of Guangxi Province,China (Nos.2023JJA160192 and 2021GXNSFAA220096)+1 种基金the Guangxi Science and Technology Major Project,China (No.AA23073018)the Guangxi Chongzuo Science and Technology Plan,China (No.2023ZY00503).
文摘With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.