Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studi...Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.展开更多
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zir...The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.展开更多
The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and gar...The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.展开更多
The Banshanping granitoid rocks distribute in the east of the North Qinling orogenic belt.It is a diorite-quartz diorite-granodiorite-granite series,spreading in a NW-SE direction,and intrudes into the Erlangping Grou...The Banshanping granitoid rocks distribute in the east of the North Qinling orogenic belt.It is a diorite-quartz diorite-granodiorite-granite series,spreading in a NW-SE direction,and intrudes into the Erlangping Group.The SiO2 content ranges from 57.04% to 76.56%,Na2O from 2.05% to 4.65%,K2O from 0.84% to 3.40%.Major element characteristics indicate that Banshanping granitoid rocks have properties of I type granotoids.SREE ranges from 36.51 ppm to 473.25 ppm,and LREE/ HREE ratios lie between 3.95 and 22.18.Negative Eu anomalies are not obvious in most samples,though there are obvious Nb,P and Ti positive anomalies.The zircon LA-ICP-MS ages of Banshangping granitoid rocks are 496.0±8.1 Ma-486.9±9.3 Ma.Hf isotope shows that 176Hf/177Hf ratios range from 0.282721 to 0.282876,εHf(t) values from 8.5 to 14,all positive,and corresponding modal ages (TDM2) range from 559 Ma to 908 Ma.Based on Hf isotope characteristics and existing SmNd and Rb-Sr isotope data,we consider that the Banshanping granitoid rocks originate from mantlederived material,i.e.the igneous rocks that formed in Neoproterozoic,and there may be a certain amount of crust-derived material during the formation of Banshanping granitoid rocks.展开更多
Zircon LA-ICP-MS U-Pb age, geochemical and Nd isotopic data are presented for a newly recognized high-Mg dioritic dike from Haicheng, Liaodong Peninsula, NE China, to constrain its petrogenesis. The zircons from the h...Zircon LA-ICP-MS U-Pb age, geochemical and Nd isotopic data are presented for a newly recognized high-Mg dioritic dike from Haicheng, Liaodong Peninsula, NE China, to constrain its petrogenesis. The zircons from the high-Mg diorite exhibit striped absorption and oscillatory growth zoning in the cathodoluminescence (CL) images, and have high Th/U ratios (0. 05-0.9), indicating a magma origin. Zircon LA-ICP-MS U-Pb dating indicates that 206pb/238U ages of 12 spots of zircons are between 167 Ma and 178 Ma, yielding a weighted mean 206pb/238U age of 172 + 2 Ma (MSWD =4. 1 ), which represents the forming age of the high-Mg dioritic dike, i. e. Middle Jurassic. Geochemically, the samples have SiO2 =55.4-60. 6 wt. % , Na20 =2. 2-2.76 wt. % , K20 = 1.32-2. 02 wt. % and (Na2O + K2O) =3.82--4. 47 wt. %, belonging to sub-alkaline series and displaying a calc-alkaline evolutionary trend. They are characterized by high MgO (4. 75-6.85 wt. % ), Mg# (55-61), Cr(130-262 ppm), Ni(63-130 ppm), Sr(568-857 ppm), and Ba(484-1 130 ppm) contents, with geochemical features analogous to those of high-Mg adakites. They show variable end (t) values ( - 1.3 to - 3.9) , with a weighted value of - 2. 7, which plot intermediately between the field of the ancient continental crust and the depleted mantle source, indicating that both the lower crust and mantle source are necessary for the generation of the parent magma of the Haicheng high-Mg diorites. The Haicheng high-Mg dioritic dike in the Liaodong Peninsula and the Jurassic magmatism in the eastern North China Craton formed under a continental crustal thickening setting that may be related to subduction of the Paleo-Pacific oceanic plate.展开更多
A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolu...A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolution of this region.However,the study of the granodioritic pluton in East Junggar is particularly weak.展开更多
The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of v...Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.展开更多
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetall...Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.展开更多
We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depressio...We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depression, Tibet. Coupled with previously published data in the region, this paper proposes new insights into the geochronological framework for the Nadigangri Formation. The deposition ages of tuffite from top to bottom in the Woruo Mountain, Quem Co and Dongqu River, are 203 Ma, 226 Ma, 221.5 Ma and 221.1 Ma, respectively. The detrital zircons yield a younger cluster of ages of 201.5-225 Ma from the conglomerate of the Quem Co Formation. The Late Triassic Nadigangri Formation defines a temporal range approximately between 201 and 225 Ma (Norian-Rhaetian), including three predominant groups of 220-225 Ma, 210-217 Ma and 201-205 Ma, which correspond with the three main rifting episodes of initial rifting, further rifting and final rifting. Positive ~Hf(t) value and low model ages in younger detrital zircons suggests a juvenile character. However, the Hf isotopes of magmatic zircons display the presence of reworked ancient crust with 1.1-1.8 Ga. These results provide strong constraints not only on the temporal range of the Late Triassic Nadigangri Formation, but also on the onset of the Qiangtang Mesozoic rift basin.展开更多
The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most i...The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most important super large deposits of the Truong Son Fold Belt.Our LA-ICP-MS zircon U-Pb dating results show that granodiorite porphyry samples from the Sepon deposit have ages of 302.1-4-2.9 Ma, which is a crucial phase for magmatic-tectonical activities from the Late Carboniferous to Early Permian and has avital influence on the mineralization of copper and gold.Zircon from granodiorite porphyry yields εHf (t)values of 4.32 to 9.64,and TDM2 has an average age of 914 Ma,suggesting that the source of the granodiorite porphyry in the region were mainly mantle components but underwent mixing and contamination of crust materials.The Ce^4+/Ce^3+ value of zircon in the granodiorite porphyry varys greatly from 2.4 to 1438.29,which shows magma mixing might occur.Considering the characteristics of trace elements in the zircon and the whole rock geochemical characteristics of intrusion rocks as well as the characteristics of regional volcanic-sedimentary association,it is indicated that the tectonic setting may be the continental arc environment.The Sepon Au-Cu deposit is derived from emplacement of calc-alkaline intermediate-acid magma with coming from deep sources in the subduction process of the Paleotethys Ocean,forming porphyry Mo-Cu,skam Cu-Au mineralization and a hydrothermal sedimentary-hosted Au mineralization in the wall rocks.展开更多
We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic p...We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.展开更多
Field observation, geochemical signatures and zircon Hf isotope data indicate that Cuomuqu ophiolite in the Bangonghu area was formed in a back-arc basin (BAB) above a supra- subduction zone (SSZ). Zircon U-Pb dat...Field observation, geochemical signatures and zircon Hf isotope data indicate that Cuomuqu ophiolite in the Bangonghu area was formed in a back-arc basin (BAB) above a supra- subduction zone (SSZ). Zircon U-Pb dating of the diabase from the Cuomuqu massif yielded an age of 164.3±1.9 Ma, thus indicating that the ophiolite complex was formed in the Middle Jurassic during back-arc extension of the mature Bangonghu-Nujiang Ocean. The zircon εHf(t) and TDMC values of the plagiogranite are similar to the εHf(t) and TDM of the diabase, respectively. The mode of occurrence of plagiogranites and their bulk-rock and Hf isotope characteristics indicate that they were derived from the mantle, associated with the surrounding gabbro and diabase, and were formed by partial melting of altered and hydrated mafic rocks under shear conditions during lateral drifting of the oceanic crust. The zircon U-Pb age of the plagiogranite is 156.4±1.4 Ma, and it is 7.9 Ma younger than the hosting diabase. In this study, zircon chronological and Hf isotopic data were tentatively analyzed to determine the genesis of plagiogranites in the Cuomuqu ophiolite complex.展开更多
Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, ...Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.展开更多
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide ...Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.展开更多
Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentr...Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.展开更多
The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host t...The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host trachydacite with the aim of constraining its petrogenesis,magma source and regional tectonic setting.LA-ICP-MS zircon U-Pb dating indicates that the trachydacite was formed in 32. 68 ± 0. 50 Ma( MSWD =1. 6),i. e.,Oligocene. The trachydacite is rich in potassium and poor in Mg#( 5. 10-9. 70),belonging to the peraluminous shoshonite series. The rocks are enriched in LILE( large ion lithophile elements) Rb,Ba,K and LREE,depleted in HFSE( high field strength elements) Nb,Ta,P,Ti,with high Sr and low Y and Yb,having the characteristics of the C type adakite. It is calculated that the initial εHf( t) of the zircons range from-0. 92 to 2. 07 and their two-stage Hf model ages T_(DM2) range from 978 Ma to 1 169 Ma. The magma source should be mainly the partially melt mafic rocks of the thickened Middle Neoproterozoic lower crust of the Northern Qiangtang massif with the addition of ancient aluminosilica material in the melting process. The rocks formed in the tectonic setting of delamination of lithosphere and extension of the thickened crust. During the period of 40-32 Ma,large-scale potassium rich alkaline magmatism occurred in this area. The porphyry metallogenesis is related to the magmatic activities in this period.展开更多
Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North Chin...Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North China Craton(NCC)(Zhang et al,2007,2009).Late Carboniferous Dongwanzi ultramafic-mafic cumulate complex occurs in northern margin of the NCC and is intruded by a syenite with depleted Sr-Nd isotopes (Ma et al.,2014).However,the age and petrogenesis of this syenite is poorly constrained.In this study,we present new petrological,zircon U-Pb and Hf isotopic data of the Dongwanzi syenite,in order to put insights on its formation age and petrogenetic relationship with cumulates.展开更多
Mafic dykes preserved important information on mantle melting regimes in the early Earth history.Despite the fact that a large volume of geochronological data for mafic dykes was recently received,several important is...Mafic dykes preserved important information on mantle melting regimes in the early Earth history.Despite the fact that a large volume of geochronological data for mafic dykes was recently received,several important issues展开更多
The Wulonggou area located in the Eastern Kunlun Orogen in NW China is characterized by extensive granitoid magmatism,ductile faulting and orogenic gold mineralization.The Huanglonggou granodiorite is cut by an orogen...The Wulonggou area located in the Eastern Kunlun Orogen in NW China is characterized by extensive granitoid magmatism,ductile faulting and orogenic gold mineralization.The Huanglonggou granodiorite is cut by an orogenic gold-bearing fault.This study investigated the major and trace-element compositions,zircon U-Pb dates and zircon Hf isotopic compositions of the Huanglonggou granodiorite.One Huanglonggou granodiorite sample yielded a weighted mean U-Pb zircon age of^221 Ma(Carnian).The Carnian granodiorite is metaluminous,with high alkalis contents of 6.37%--8.86%,high Al_2O_3contents of 15.41%--16.19%,high Sr contents of(426--475)×10^(-6),relatively high Sr/Y ratios,high(La/Yb)_Nvalues and low HREE,suggesting an adakite type high-Si O_2granite.The Huanglonggou granodiorite sample has zirconε_(Hf)(t)values ranging from-4.4 to+1.1.These Hf isotopic data suggest that the Carnian granodiorite was likely derived from the partial melting of subducted Paleo-Tethys oceanic slab.It is suggested that the Late Triassic granodiorite was emplaced during the northward subduction of Paleo-Tethys oceanic slab.Orogenic gold mineralization in the Wulonggou area formed after the emplacement of the Late Triassic intrusive rocks.展开更多
基金This work was financially suppo.rted by the National Natural Science Foundation of China (No. 40372038 and No. 40325006) Special Grant of 0il & Gas Research (XQ-2004-07).
文摘Mesozoic bimodal volcanic rocks of basaltic andesite and rhyolite are widely distributed in the Da Hinggan Range, but their petrogenetic relationships and geodynamic implications are rarely constrained. Detailed studies on doleritic and porphyry dikes in the Zhalantun area indicate that they display features of magma mixing, suggesting their coeval formation. In situ zircon U-Pb dating shows that the porphyry was emplaced in the Early Cretaceous with a ^206Pb/^238U age of 130±1 Ma. Zircons from the dolerite also yield an Early Cretaceous emplacement age of 124±2 Ma although some inherited zircons have been identified. These age results indicate that the Early Cretaceous was an important period of magmatism in the Da Hinggan Range. Zircons from porphyry are characterized by positive value of εHf(t) as high as 10.3±0.5 with Hf depleted mantle model age of 349-568 Ma, whereas magmatic zircons from the dolerite have εHf(t) value of 11.0±1.4 with Hf depleted mantel model age of 342-657 Ma, consistent with those from the porphyry. Considering other data on the geological evolution of this area, it is concluded that the mafic magma originated from the partial melting of Paleozoic enriched lithospheric mantle, whereas the felsic magma came from recycling of juvenile crust formed during the Paleozoic. Both of the protoliths are closely related to the subduction of the Paleo-Asian Ocean during the Paleozoic, indicating that the Paleozoic is an important period of large-scale crustal growth in the area.
基金financially supported by the National Project of Scientific and Technological Support(Grant No:2006BAB01A11)
文摘The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite and granodiorite range from-8.1 to +1.3,and single-stage Hf model ages from 809 Ma to 1171 Ma,while theε_(Hf)(t)values of the monzogranite are-14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma.These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials,and there were two stages of continental crust growth during the Neoproterozoic(~800 Ma)and Indosinian(~210 Ma)eras, respectively,in the south Qinling tectonic domain of the Qinling orogrnic belt,Central China.
基金supported jointly by the National Natural Science Foundation of China (Grant Nos. 41030423,41072068 and 40872071)National Basic Research Program of China (Grant No. 2006CB403502)+2 种基金MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University (Grant No. BJ091349)National Found for Fostering Talents of Basic Sciences (Grant No. J0830519)Graduate Innovation and Creativity Funds of Northwest University,China (Grant No. 10YZZ24)
文摘The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.
基金granted by China Geological Survey Projects (1212011120160, 1212010918007, 1212010818090, 1212010611803, 1212010711816)Special Project of Deep Exploration and Experimental Study–Pre-study of Scientific Drilling in Mineralized Cluster Area in Eastern China (SinoProbe-05-05)National Science Foundation Project (40921001, 49772106,40472034,40672049)
文摘The Banshanping granitoid rocks distribute in the east of the North Qinling orogenic belt.It is a diorite-quartz diorite-granodiorite-granite series,spreading in a NW-SE direction,and intrudes into the Erlangping Group.The SiO2 content ranges from 57.04% to 76.56%,Na2O from 2.05% to 4.65%,K2O from 0.84% to 3.40%.Major element characteristics indicate that Banshanping granitoid rocks have properties of I type granotoids.SREE ranges from 36.51 ppm to 473.25 ppm,and LREE/ HREE ratios lie between 3.95 and 22.18.Negative Eu anomalies are not obvious in most samples,though there are obvious Nb,P and Ti positive anomalies.The zircon LA-ICP-MS ages of Banshangping granitoid rocks are 496.0±8.1 Ma-486.9±9.3 Ma.Hf isotope shows that 176Hf/177Hf ratios range from 0.282721 to 0.282876,εHf(t) values from 8.5 to 14,all positive,and corresponding modal ages (TDM2) range from 559 Ma to 908 Ma.Based on Hf isotope characteristics and existing SmNd and Rb-Sr isotope data,we consider that the Banshanping granitoid rocks originate from mantlederived material,i.e.the igneous rocks that formed in Neoproterozoic,and there may be a certain amount of crust-derived material during the formation of Banshanping granitoid rocks.
基金financially supported by the National Natural Science Foundation of China ( Grant No. 41202136)the China Geological Survey Program ( Grant No. 12120114021601)+1 种基金the Basic Scientific Research Foundation of the Institute of Geology, CAGS ( J1301)Undergraduates Innovating Experimentation Project of Jilin University ( 2010C61164)
文摘Zircon LA-ICP-MS U-Pb age, geochemical and Nd isotopic data are presented for a newly recognized high-Mg dioritic dike from Haicheng, Liaodong Peninsula, NE China, to constrain its petrogenesis. The zircons from the high-Mg diorite exhibit striped absorption and oscillatory growth zoning in the cathodoluminescence (CL) images, and have high Th/U ratios (0. 05-0.9), indicating a magma origin. Zircon LA-ICP-MS U-Pb dating indicates that 206pb/238U ages of 12 spots of zircons are between 167 Ma and 178 Ma, yielding a weighted mean 206pb/238U age of 172 + 2 Ma (MSWD =4. 1 ), which represents the forming age of the high-Mg dioritic dike, i. e. Middle Jurassic. Geochemically, the samples have SiO2 =55.4-60. 6 wt. % , Na20 =2. 2-2.76 wt. % , K20 = 1.32-2. 02 wt. % and (Na2O + K2O) =3.82--4. 47 wt. %, belonging to sub-alkaline series and displaying a calc-alkaline evolutionary trend. They are characterized by high MgO (4. 75-6.85 wt. % ), Mg# (55-61), Cr(130-262 ppm), Ni(63-130 ppm), Sr(568-857 ppm), and Ba(484-1 130 ppm) contents, with geochemical features analogous to those of high-Mg adakites. They show variable end (t) values ( - 1.3 to - 3.9) , with a weighted value of - 2. 7, which plot intermediately between the field of the ancient continental crust and the depleted mantle source, indicating that both the lower crust and mantle source are necessary for the generation of the parent magma of the Haicheng high-Mg diorites. The Haicheng high-Mg dioritic dike in the Liaodong Peninsula and the Jurassic magmatism in the eastern North China Craton formed under a continental crustal thickening setting that may be related to subduction of the Paleo-Pacific oceanic plate.
基金supported financially by the NSFC projects(Grant Nos.U1403291,41830216,and 41802074)projects of the China Geological Survey(Grant Nos.DD20160024,DD20160123,and DD20160345)IGCP 662.
文摘A large area of Late Paleozoic intrusions occursalong the Kalamaili fault in North Xinjiang,which is divided into I-type and A-type granite(Liu et al.,2013),and are the ideal objects for revealing the geological evolution of this region.However,the study of the granodioritic pluton in East Junggar is particularly weak.
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.
文摘Located in the middle segment of the Trans-North China Orogen, the Fuping Complex is considered as a critical area in understanding the evolution history of the North China Craton (NCC). The complex is composed of various high-grade and multiply deformed rocks, including gray gneiss, basic granulite, amphibolite, fine-grained gneiss and marble, metamorphosed to upper amphibolite or granulite facies. It can be divided into four rock units: the Fuping TTG gneisses, Longquanguan augen gneisses, Wanzi supracrustals, and Nanying granitic gneisses. U-Pb age and Hf isotope compositions of about 200 detrital zircons from the Wanzi supracrustals of the Fuping Complex have been analyzed. The data on metamorphic zircon rims give ages of 1.82-1.84 Ga, corresponding to the final amalgamation event of the NCC, whereas the data for igneous zircon cores yield two age populations at -2.10 and -2.51 Ga, with some inherited ages scattering between 2.5 and 2.9 Ga. These results suggest that the Wanzi supracrustals were derived from the Fuping TTG gneisses (-2.5 Ga) and the Nanying granitic gneisses (2.0-2.1 Ga) and deposited between 2.10 and 1.84 Ga. All zircons with -2.51 Ga age have positive initial εHf values from +1.4 to +10.9, suggesting an important crustal growth event at -2.5 Ga through the addition of juvenile materials from the mantle. The Hf isotope data for the detrital zircons further imply that the 2.8 Ga rocks are important components in the lower crust, which is consistent with a suggestion from Nd isotope data for the Eastern Block. The zircons of 2.10 Ga population have initial εHf values of-4.9 to +6.1, interpreted as mixing of crustal re-melt with minor juvenile material contribution at 2.1 Ga. These results are distinct from that for the Western Block, supporting that the Fuping Complex was emplaced in a tectonic active environment at the western margin of the Eastern Block.
基金supported by the National Natural Science Foundation of China (Grant No. 40930419)the National Special Research Programs for Non-Profit Trades (Sponsored by MLR, Grant Nos. 200911007 and 200811114)Open Foundation of State Key laboratory of Geological Processes and Mineral Resources, School of the Earth Sciences and Resources, China University of Geosciences, Beijing (Grant No. GPMR201029)
文摘Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.
基金funded by the National Natural Science Foundation of China(Grant No.41502112 and 41702119)a project program under China Geological Survey(No.DD20160159)
文摘We report here U-Pb age and in situ Hf isotopic results for detrital and magmatic zircons from one conglomerate and four tuffite samples from the Late Triassic Nadigangri Formation across the North Qiangtang depression, Tibet. Coupled with previously published data in the region, this paper proposes new insights into the geochronological framework for the Nadigangri Formation. The deposition ages of tuffite from top to bottom in the Woruo Mountain, Quem Co and Dongqu River, are 203 Ma, 226 Ma, 221.5 Ma and 221.1 Ma, respectively. The detrital zircons yield a younger cluster of ages of 201.5-225 Ma from the conglomerate of the Quem Co Formation. The Late Triassic Nadigangri Formation defines a temporal range approximately between 201 and 225 Ma (Norian-Rhaetian), including three predominant groups of 220-225 Ma, 210-217 Ma and 201-205 Ma, which correspond with the three main rifting episodes of initial rifting, further rifting and final rifting. Positive ~Hf(t) value and low model ages in younger detrital zircons suggests a juvenile character. However, the Hf isotopes of magmatic zircons display the presence of reworked ancient crust with 1.1-1.8 Ga. These results provide strong constraints not only on the temporal range of the Late Triassic Nadigangri Formation, but also on the onset of the Qiangtang Mesozoic rift basin.
基金the National Science Foundation of China (41373036, 41002027)the Geological Survey of China Geological Survey Project (121201103000150006,121201066307).
文摘The Truong Son Fold Belt,located at the northeastern margin of the Indochina Block,is considered to be tectonically linked to the subduction of the Paleotethys Ocean and subsequent collision.Sepon is one of the most important super large deposits of the Truong Son Fold Belt.Our LA-ICP-MS zircon U-Pb dating results show that granodiorite porphyry samples from the Sepon deposit have ages of 302.1-4-2.9 Ma, which is a crucial phase for magmatic-tectonical activities from the Late Carboniferous to Early Permian and has avital influence on the mineralization of copper and gold.Zircon from granodiorite porphyry yields εHf (t)values of 4.32 to 9.64,and TDM2 has an average age of 914 Ma,suggesting that the source of the granodiorite porphyry in the region were mainly mantle components but underwent mixing and contamination of crust materials.The Ce^4+/Ce^3+ value of zircon in the granodiorite porphyry varys greatly from 2.4 to 1438.29,which shows magma mixing might occur.Considering the characteristics of trace elements in the zircon and the whole rock geochemical characteristics of intrusion rocks as well as the characteristics of regional volcanic-sedimentary association,it is indicated that the tectonic setting may be the continental arc environment.The Sepon Au-Cu deposit is derived from emplacement of calc-alkaline intermediate-acid magma with coming from deep sources in the subduction process of the Paleotethys Ocean,forming porphyry Mo-Cu,skam Cu-Au mineralization and a hydrothermal sedimentary-hosted Au mineralization in the wall rocks.
基金financially supported by Geological Survey of China Projects(Nos.1212010814054,1212010911049)Ministry of land and resources of public welfare scientific research(No.201311116)
文摘We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.
基金supported by the National Nature Science Foundation of China [No.41372208 and 41472054]the Foundation of China Geological Survey [No.1212011121259,1212011121262 and 1212011221087]the Open found of the State Key Laboratory of Ore Deposit Geochemistry,CAS [No.201304]
文摘Field observation, geochemical signatures and zircon Hf isotope data indicate that Cuomuqu ophiolite in the Bangonghu area was formed in a back-arc basin (BAB) above a supra- subduction zone (SSZ). Zircon U-Pb dating of the diabase from the Cuomuqu massif yielded an age of 164.3±1.9 Ma, thus indicating that the ophiolite complex was formed in the Middle Jurassic during back-arc extension of the mature Bangonghu-Nujiang Ocean. The zircon εHf(t) and TDMC values of the plagiogranite are similar to the εHf(t) and TDM of the diabase, respectively. The mode of occurrence of plagiogranites and their bulk-rock and Hf isotope characteristics indicate that they were derived from the mantle, associated with the surrounding gabbro and diabase, and were formed by partial melting of altered and hydrated mafic rocks under shear conditions during lateral drifting of the oceanic crust. The zircon U-Pb age of the plagiogranite is 156.4±1.4 Ma, and it is 7.9 Ma younger than the hosting diabase. In this study, zircon chronological and Hf isotopic data were tentatively analyzed to determine the genesis of plagiogranites in the Cuomuqu ophiolite complex.
基金financially supported by the National Natural Science Foundation of China(grant No.41502076)the Science Research Fund of Yunnan Provincial Education Department(grant No.2015Y066)+1 种基金the Provincial People Training Program of Kunming University of Science and Technology(grant No.KKSY201421042)the Project of China Geological Survey(grant No.12120114013701)
文摘Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41603053)the National Key R & D Program of China (No. 2018YFC0604206)
文摘Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit,northern margin of the North China Craton(NCC),which provide insights into the plate tectonic in Paleoproterozoic.Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma,respectively).Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals,and none of the zircon grains has the extremely high Th/U characteristic of carbonatite,which are consistent with crystallization of the zircon from silicate,and the zircon is suggested to be derived from trapped basement complex.Hf isotopes in the zircon from the studied carbonatite are different from grain to grain,suggesting the zircons were not all formed in one single process.Majority ofεHf(t)values are compatible with ancient crustal sources with limited juvenile component.The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma.Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC,coeval with the assembly of the supercontinent Columbia,and provide insights into the plate tectonic of the NCC in Paleoproterozoic.
基金financially supported by the National Natural Science Foundation of China (grant No.41502076)the Leading Talents Plan Project of Science and Technology of Yunnan Province (grant No.2013HA001)the Science Research Fund of Yunnan Provincial Education Department (grant No.2015Y066)
文摘Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.
基金Supported by Project of China Geological Survey(No.12120114080901)
文摘The Zhalaxiageyong lead-zinc-copper polymetallic deposit is a typical porphyry deposit of the Tuotuohe area. Whole-rock geochemical analyses,Zircon U-Pb dating and Hf isotope analysis are undertaken for the ore host trachydacite with the aim of constraining its petrogenesis,magma source and regional tectonic setting.LA-ICP-MS zircon U-Pb dating indicates that the trachydacite was formed in 32. 68 ± 0. 50 Ma( MSWD =1. 6),i. e.,Oligocene. The trachydacite is rich in potassium and poor in Mg#( 5. 10-9. 70),belonging to the peraluminous shoshonite series. The rocks are enriched in LILE( large ion lithophile elements) Rb,Ba,K and LREE,depleted in HFSE( high field strength elements) Nb,Ta,P,Ti,with high Sr and low Y and Yb,having the characteristics of the C type adakite. It is calculated that the initial εHf( t) of the zircons range from-0. 92 to 2. 07 and their two-stage Hf model ages T_(DM2) range from 978 Ma to 1 169 Ma. The magma source should be mainly the partially melt mafic rocks of the thickened Middle Neoproterozoic lower crust of the Northern Qiangtang massif with the addition of ancient aluminosilica material in the melting process. The rocks formed in the tectonic setting of delamination of lithosphere and extension of the thickened crust. During the period of 40-32 Ma,large-scale potassium rich alkaline magmatism occurred in this area. The porphyry metallogenesis is related to the magmatic activities in this period.
基金supported by the National Science Foundation of China(grants 41302042 and 41672217)the Fundamental Research Funds for the Central Universities(grants N170104022).
文摘Objective Though the Central Asian Orogenic Belt (CAOB) is characterized by widespread Phanerozoic crustal growth,there is little juvenile crust documented in its southeastern segment,northern margin of the North China Craton(NCC)(Zhang et al,2007,2009).Late Carboniferous Dongwanzi ultramafic-mafic cumulate complex occurs in northern margin of the NCC and is intruded by a syenite with depleted Sr-Nd isotopes (Ma et al.,2014).However,the age and petrogenesis of this syenite is poorly constrained.In this study,we present new petrological,zircon U-Pb and Hf isotopic data of the Dongwanzi syenite,in order to put insights on its formation age and petrogenetic relationship with cumulates.
基金supported by Russian Science Foundation,grant№16-17-10260
文摘Mafic dykes preserved important information on mantle melting regimes in the early Earth history.Despite the fact that a large volume of geochronological data for mafic dykes was recently received,several important issues
基金Supported by Project of National Natural Science Foundation of China(No.41572056)
文摘The Wulonggou area located in the Eastern Kunlun Orogen in NW China is characterized by extensive granitoid magmatism,ductile faulting and orogenic gold mineralization.The Huanglonggou granodiorite is cut by an orogenic gold-bearing fault.This study investigated the major and trace-element compositions,zircon U-Pb dates and zircon Hf isotopic compositions of the Huanglonggou granodiorite.One Huanglonggou granodiorite sample yielded a weighted mean U-Pb zircon age of^221 Ma(Carnian).The Carnian granodiorite is metaluminous,with high alkalis contents of 6.37%--8.86%,high Al_2O_3contents of 15.41%--16.19%,high Sr contents of(426--475)×10^(-6),relatively high Sr/Y ratios,high(La/Yb)_Nvalues and low HREE,suggesting an adakite type high-Si O_2granite.The Huanglonggou granodiorite sample has zirconε_(Hf)(t)values ranging from-4.4 to+1.1.These Hf isotopic data suggest that the Carnian granodiorite was likely derived from the partial melting of subducted Paleo-Tethys oceanic slab.It is suggested that the Late Triassic granodiorite was emplaced during the northward subduction of Paleo-Tethys oceanic slab.Orogenic gold mineralization in the Wulonggou area formed after the emplacement of the Late Triassic intrusive rocks.