期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于EM-KF算法的微地震信号去噪方法
1
作者 李学贵 张帅 +2 位作者 吴钧 段含旭 王泽鹏 《吉林大学学报(信息科学版)》 CAS 2024年第2期200-209,共10页
针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximizati... 针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解,结合卡尔曼滤波,可以有效地提升微地震信号的信噪比,同时保留有效信号。通过合成和真实数据实验结果表明,与传统的小波滤波和卡尔曼滤波相比,该方法具有更高的效率和更好的精度。 展开更多
关键词 微地震 EM算法 卡尔曼滤波 信噪比
下载PDF
基于粒子滤波的微地震信号去噪方法 被引量:5
2
作者 李学贵 高明 +5 位作者 吴润桐 王如意 訾乾龙 鉴振 李文森 周英杰 《吉林大学学报(信息科学版)》 CAS 2022年第5期701-709,共9页
针对微地震信号非高斯、非线性且信号能量较弱等问题,提出一种基于粒子滤波的微地震信号去噪方法。通过建立微地震信号的状态方程,提取原始信号的背景噪声,将其与状态方程之和作为观测方程,联立状态方程与观测方程建立状态空间模型,并... 针对微地震信号非高斯、非线性且信号能量较弱等问题,提出一种基于粒子滤波的微地震信号去噪方法。通过建立微地震信号的状态方程,提取原始信号的背景噪声,将其与状态方程之和作为观测方程,联立状态方程与观测方程建立状态空间模型,并通过重要性采样和重采样近似估计后验概率密度,从而求解去噪后的微地震信号,提高微地震信号的去噪效果。在模拟微地震资料和真实微地震资料中的应用表明,与传统去噪方法相比,该方法处理效果更好,去除噪声同时保留有效信号,信噪比得到有效提高,因此具有良好的应用前景。 展开更多
关键词 微地震 粒子滤波 重要性采样 重采样 信噪比
下载PDF
基于改进涡流搜索算法的支持向量机分类模型 被引量:2
3
作者 李学贵 郭远涛 +1 位作者 李盼池 王艾 《吉林大学学报(信息科学版)》 CAS 2020年第3期312-318,共7页
支持向量机(SVM:Support Vector Machine)是定义在特征空间上的间隔最大的线性分类器,参数的选择决定了其学习性能和泛化能力。针对此参数选择问题,采用改进的涡流搜索算法对支持向量机参数进行选择,寻找最优适应度函数。仿真实验表明,... 支持向量机(SVM:Support Vector Machine)是定义在特征空间上的间隔最大的线性分类器,参数的选择决定了其学习性能和泛化能力。针对此参数选择问题,采用改进的涡流搜索算法对支持向量机参数进行选择,寻找最优适应度函数。仿真实验表明,改进的涡流搜索算法是一种有效的SVM参数选择方法,有利于跳出局部最小值,其优化性能不低于涡流搜索算法。 展开更多
关键词 支持向量机 改进的涡流搜索算法 参数优化 元启发式优化算法 局部最小值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部