汉语是一种有调语言,因此在汉语语音识别中,调型信息起着非常关键的作用。在现有的隐马尔可夫模型(Hidden Markov Model)框架下,如何有效地利用调型信息是有待研究的问题。现有的汉语语音识别系统中主要采用两种方式来使用调型信息:一...汉语是一种有调语言,因此在汉语语音识别中,调型信息起着非常关键的作用。在现有的隐马尔可夫模型(Hidden Markov Model)框架下,如何有效地利用调型信息是有待研究的问题。现有的汉语语音识别系统中主要采用两种方式来使用调型信息:一种是基于Embedded Tone Model,即将调型特征向量与声学特征向量组成一个流去训练模型;一种是Explicit Tone Model,即将调型信息单独建模,再利用此模型优化原有的解码网络。该文将两种方法统一起来,首先利用Embedded Tone Model采用双流而非单流建模得到Nbest备选,再利用Explicit ToneModel对调进行左相关建模并对Nbest得分重新修正以得到识别结果,从而获得性能提升。与传统的无调模型相比,该文方法的识别率的平均绝对提升超过了3.0%,在第三测试集上的绝对提升达到了5.36%。展开更多
在文本无关的说话人识别中,韵律特征由于其对信道环境噪声不敏感等特性而被应用于话者识别任务中。本文对韵律参数采用基于高斯混合模型超向量的支持向量机建模方法,并将类内协方差特征映射方法应用于模型超向量上,单系统的性能比传统...在文本无关的说话人识别中,韵律特征由于其对信道环境噪声不敏感等特性而被应用于话者识别任务中。本文对韵律参数采用基于高斯混合模型超向量的支持向量机建模方法,并将类内协方差特征映射方法应用于模型超向量上,单系统的性能比传统方法的混合高斯-通用背景模型(Gaussian mixture model-universalbackground model,GMM-UBM)基线系统有了40.19%的提升。该方法与本文的基于声学倒谱参数的确认系统融合后,能使整体系统的识别性能有9.25%的提升。在NIST(National institute of standards and technology mixture)2006说话人测试数据库上,融合后的系统能够取得4.9%的等错误率。展开更多
文摘汉语是一种有调语言,因此在汉语语音识别中,调型信息起着非常关键的作用。在现有的隐马尔可夫模型(Hidden Markov Model)框架下,如何有效地利用调型信息是有待研究的问题。现有的汉语语音识别系统中主要采用两种方式来使用调型信息:一种是基于Embedded Tone Model,即将调型特征向量与声学特征向量组成一个流去训练模型;一种是Explicit Tone Model,即将调型信息单独建模,再利用此模型优化原有的解码网络。该文将两种方法统一起来,首先利用Embedded Tone Model采用双流而非单流建模得到Nbest备选,再利用Explicit ToneModel对调进行左相关建模并对Nbest得分重新修正以得到识别结果,从而获得性能提升。与传统的无调模型相比,该文方法的识别率的平均绝对提升超过了3.0%,在第三测试集上的绝对提升达到了5.36%。
文摘在文本无关的说话人识别中,韵律特征由于其对信道环境噪声不敏感等特性而被应用于话者识别任务中。本文对韵律参数采用基于高斯混合模型超向量的支持向量机建模方法,并将类内协方差特征映射方法应用于模型超向量上,单系统的性能比传统方法的混合高斯-通用背景模型(Gaussian mixture model-universalbackground model,GMM-UBM)基线系统有了40.19%的提升。该方法与本文的基于声学倒谱参数的确认系统融合后,能使整体系统的识别性能有9.25%的提升。在NIST(National institute of standards and technology mixture)2006说话人测试数据库上,融合后的系统能够取得4.9%的等错误率。