针对非常规安全风险对新型电力系统造成的影响,提出了考虑源荷不确定性的新型电力系统双层协同无功控制策略。以配电网网络损耗最小为目标,考虑多种调节设备约束,建立配电网无功优化模型。构建配电网分布式无功优化求解框架,外层采用自...针对非常规安全风险对新型电力系统造成的影响,提出了考虑源荷不确定性的新型电力系统双层协同无功控制策略。以配电网网络损耗最小为目标,考虑多种调节设备约束,建立配电网无功优化模型。构建配电网分布式无功优化求解框架,外层采用自适应超松弛惩罚参数交替方向乘子法(alternating direction method of multipliers,ADMM)进行全局更新迭代求解,内层采用列与约束生成算法(column-and-constraint generation,C&CG)对各区域两阶段分布鲁棒无功优化模型求解。所提策略能有效改进分布式无功优化模型求解效率,降低网络损耗,提高新型电力系统的稳定性。展开更多
传统的数据上报,大多采用发送方作为客户端,向上级服务器发起连接请求,采用主动推送的方式完成数据传输。当电站数量巨大且上报数据种类和通信条件都不尽相同时,这种方式无疑为上级服务器打开了一个后门,带来了一定的安全隐患。提出了...传统的数据上报,大多采用发送方作为客户端,向上级服务器发起连接请求,采用主动推送的方式完成数据传输。当电站数量巨大且上报数据种类和通信条件都不尽相同时,这种方式无疑为上级服务器打开了一个后门,带来了一定的安全隐患。提出了一种接收方发起的电站数据传输控制方法,由上级数据中心发起请求、电站响应并完成数据传送的反向拉动模式,使得中心侧不再暴露通讯端口,降低了中心侧网络遭受攻击的可能性。有此,设计了配套的应用层数据可靠传输协议ADRTP(Application-layer Data Reliable Transport Protocol),通过一系列控制机制和调整最大数据包长度L_(max),提高数据传输的效率。展开更多
文摘针对非常规安全风险对新型电力系统造成的影响,提出了考虑源荷不确定性的新型电力系统双层协同无功控制策略。以配电网网络损耗最小为目标,考虑多种调节设备约束,建立配电网无功优化模型。构建配电网分布式无功优化求解框架,外层采用自适应超松弛惩罚参数交替方向乘子法(alternating direction method of multipliers,ADMM)进行全局更新迭代求解,内层采用列与约束生成算法(column-and-constraint generation,C&CG)对各区域两阶段分布鲁棒无功优化模型求解。所提策略能有效改进分布式无功优化模型求解效率,降低网络损耗,提高新型电力系统的稳定性。
文摘传统的数据上报,大多采用发送方作为客户端,向上级服务器发起连接请求,采用主动推送的方式完成数据传输。当电站数量巨大且上报数据种类和通信条件都不尽相同时,这种方式无疑为上级服务器打开了一个后门,带来了一定的安全隐患。提出了一种接收方发起的电站数据传输控制方法,由上级数据中心发起请求、电站响应并完成数据传送的反向拉动模式,使得中心侧不再暴露通讯端口,降低了中心侧网络遭受攻击的可能性。有此,设计了配套的应用层数据可靠传输协议ADRTP(Application-layer Data Reliable Transport Protocol),通过一系列控制机制和调整最大数据包长度L_(max),提高数据传输的效率。