In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high con...In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.展开更多
采用TG-DSC方法研究粒径大小为900μm石灰石的热分解过程.根据石灰石热重实验数据,结合Coats-Redfern法,Flynn-Wall-Ozawa法和Kissinger法计算石灰石热分解动力学参数,得到900μm石灰石热分解的活化能E为193.98 k J/mol,指前因子lg A为8...采用TG-DSC方法研究粒径大小为900μm石灰石的热分解过程.根据石灰石热重实验数据,结合Coats-Redfern法,Flynn-Wall-Ozawa法和Kissinger法计算石灰石热分解动力学参数,得到900μm石灰石热分解的活化能E为193.98 k J/mol,指前因子lg A为8.81 min-1.根据Malek方法判断石灰石热分解最概然机理函数,得到900μm石灰石热分解属于三维相边界反应模型R3,进一步得到其热分解动力学方程.展开更多
基金Project(2008AA06Z1071) supported by the National High-Tech Research and Development Program of ChinaProject(20306030) supported by the National Natural Science Foundation of China
文摘In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.
文摘采用TG-DSC方法研究粒径大小为900μm石灰石的热分解过程.根据石灰石热重实验数据,结合Coats-Redfern法,Flynn-Wall-Ozawa法和Kissinger法计算石灰石热分解动力学参数,得到900μm石灰石热分解的活化能E为193.98 k J/mol,指前因子lg A为8.81 min-1.根据Malek方法判断石灰石热分解最概然机理函数,得到900μm石灰石热分解属于三维相边界反应模型R3,进一步得到其热分解动力学方程.