期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
硫化零价铁-微生物复合吸附剂对磷酸三(2-氯乙基)酯的吸附-降解机制
1
作者 黄鸿 欧阳浩民 +2 位作者 杨依静 李昌霖 陈烁娜 《化工进展》 EI CAS CSCD 北大核心 2024年第8期4704-4713,共10页
氯代有机磷阻燃剂(chlorinated organophosphate flame retardants,Cl-OPFRs)已在环境中被广泛检出,由于其稳定、易迁移及具有生物毒性,因此已成为不可忽视的新兴有机污染物。本文选择环境中检出率较高的磷酸三(2-氯乙基)酯[tris(2-chlo... 氯代有机磷阻燃剂(chlorinated organophosphate flame retardants,Cl-OPFRs)已在环境中被广泛检出,由于其稳定、易迁移及具有生物毒性,因此已成为不可忽视的新兴有机污染物。本文选择环境中检出率较高的磷酸三(2-氯乙基)酯[tris(2-chloroethyl)phosphate,TCEP]为研究对象,以硫化零价铁(S/ZVI)和TCEP耐受降解菌(缓生新鞘氨醇菌,Novosphingobium tardaugens,N_(1))为研究材料,制备S/ZVI-微生物复合吸附剂(S/ZVI-N_(1)),并对其去除TCEP的性能和降解途径进行探究。结果显示,S/ZVI-N_(1)对TCEP的去除符合准一级动力学方程和Langmuir模型,表明该过程主要为单分子层的物理吸附作用,且根据准二级动力学方程的相关系数可知,在反应过程中同样存在化学吸附过程,S/ZVI-N_(1)作用于TCEP 12h,去除率达58.9%,显著高于仅依靠Novosphingobium tardaugens的去除率(32.9%)和仅依靠S/ZVI的去除率(31.2%)。产物分析表明,S/ZVI-N_(1)作用下TCEP较单独零价铁(zero-valent iron,ZVI)作用下降解更彻底,证明复合吸附剂中S/ZVI和Novosphingobium tardaugens之间存在协同作用,其最佳的反应条件为pH 5~7和30~35℃。微观分析显示,微生物和S/ZVI均参与了TCEP的降解。通过产物分析推导,S/ZVI-N_(1)对TCEP主要有2条降解途径,分别为S/ZVI主导的C—Cl键断裂和Novosphingobium tardaugens主导的O—P键断裂,最终生成磷酸三乙酯(triethyl phosphate,TEP)和磷酸(H_(3)PO_(4))。 展开更多
关键词 氯代有机磷阻燃剂 复合吸附剂 微生物降解 硫化零价铁 降解途径 磷酸三(2-氯乙基)酯
下载PDF
泥膜混合MBBR系统自养脱氮工艺的启动研究 被引量:3
2
作者 姚丽婷 陈启智 +1 位作者 赖勇州 梁瑜海 《环境科学研究》 CAS CSCD 北大核心 2022年第4期999-1006,共8页
为了加速厌氧氨氧化菌(AnAOB)富集,解决自养脱氮工艺启动缓慢的问题,在短程硝化絮状污泥反应器中投加含有少量AnAOB的悬浮填料,构建泥膜混合移动床生物膜反应器(MBBR)系统,探讨该系统在自养脱氮启动中的作用.结果表明:①在温度为20~30℃... 为了加速厌氧氨氧化菌(AnAOB)富集,解决自养脱氮工艺启动缓慢的问题,在短程硝化絮状污泥反应器中投加含有少量AnAOB的悬浮填料,构建泥膜混合移动床生物膜反应器(MBBR)系统,探讨该系统在自养脱氮启动中的作用.结果表明:①在温度为20~30℃、pH为7.8~8.2、DO浓度为0.2~0.9 mg/L的条件下,经45 d的运行,成功富集AnAOB.通过调整运行模式和曝气量,TN去除率提高至70%左右,成功启动自养脱氮工艺.②在运行过程中,曝气阶段主要发生短程硝化反应,缺氧阶段主要发生厌氧氨氧化反应.③泥膜混合MBBR系统中优势的好氧氨氧化菌(AOB)和AnAOB分别为Nitrosomonas和Candidatus_Kuenenia.Nitrosomonas主要分布于絮状污泥中,其相对丰度从42.95%减至30.98%;而Candidatus_Kuenenia主要分布于填料生物膜中,其相对丰度从5.88%增至25.90%.④泥膜混合MBBR系统中还检测出Ignavibacteriales_bacterium_UTCHB1、Pseudomonas、Denitratisoma等多种反硝化细菌,说明部分TN损失是通过内源反硝化途径实现.研究显示,基于短程硝化絮状污泥的泥膜混合MBBR系统,可以维持稳定的短程硝化,快速富集AnAOB,也可以有效缩短自养脱氮工艺的启动时间. 展开更多
关键词 自养脱氮 移动床生物膜反应器(MBBR) 好氧氨氧化菌(AOB) 厌氧氨氧化菌(AnAOB) 微生物群落
下载PDF
高溶解氧条件下不同曝气量对短程硝化性能及微生物特征的影响 被引量:9
3
作者 姚丽婷 梁瑜海 +3 位作者 陈漫霞 陈莉丹 何坤桓 余光伟 《环境科学学报》 CAS CSCD 北大核心 2021年第8期3258-3267,共10页
短程硝化过程是短程生物脱氮工艺中的限速步骤,在保证稳定亚硝化率的前提下,提高曝气量能够提高好氧氨氧化菌的活性,进而提高氨氧化速率.本文在序批式反应器中,通过改变曝气量,在高溶解氧条件下,考察不同曝气量对短程硝化的性能及微生... 短程硝化过程是短程生物脱氮工艺中的限速步骤,在保证稳定亚硝化率的前提下,提高曝气量能够提高好氧氨氧化菌的活性,进而提高氨氧化速率.本文在序批式反应器中,通过改变曝气量,在高溶解氧条件下,考察不同曝气量对短程硝化的性能及微生物的影响.结果表明,随着曝气量的增大,氨氧化速率不断升高.单位体积曝气量为0.8、1.7、3.3、5.0 L·min^(-1)·L^(-1)时,氨氧化率维持在50%左右,亚硝酸盐氮积累率稳定在99%以上,平均氨氧化速率分别为0.88、0.96、1.29和1.32 mg·L^(-1)·min^(-1).高通量测序分析表明,不同曝气量条件下,反应器中好氧氨氧化菌的优势菌属均为Nitrosomonas,而亚硝酸盐氧化菌都被有效抑制,Nitrospira丰度很低.此外,检出Acidovorax、Denitratisoma、Hyphomicrobium、Ignavibacterium等多种反硝化细菌,这些反硝化菌能够与好氧氨氧化菌共同作用,使系统发生少量内源同步硝化反硝化.综合考虑曝气能耗和反应速率,曝气量为3.3 L·min^(-1)·L^(-1)时,可实现控制短程硝化工艺的低耗高效运行. 展开更多
关键词 短程硝化 曝气量 氨氧化细菌 氨氧化速率 微生物群落
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部