为准确掌握广东省森林干扰与森林恢复的动态特征,文章基于谷歌地球引擎(Google Earth Engine,GEE)云平台构建Landsat长时序年度无云地表反射率影像集,采用LandTrendr(Landsat-based detection of Trends in Distur-bance and Recovery)...为准确掌握广东省森林干扰与森林恢复的动态特征,文章基于谷歌地球引擎(Google Earth Engine,GEE)云平台构建Landsat长时序年度无云地表反射率影像集,采用LandTrendr(Landsat-based detection of Trends in Distur-bance and Recovery)算法提取广东省1990—2020年森林干扰与森林恢复的时空分布特征,并分析其演变的驱动因素,比较不同森林类型的干扰与恢复特征。结果表明:(1)1990—2020年,广东省的森林干扰总面积约为1.35×10^(4)km^(2),集中分布在广东省西部、东部和中部小范围地区,干扰面积最大的3个城市分别为韶关、梅州、清远市;森林恢复总面积约为1.91×10^(4)km^(2),集中分布在广东省北部和西部地区,恢复面积最大的3个城市分别为韶关、清远、肇庆市。(2)广东省森林干扰与森林恢复均集中发生在海拔小于等于600 m的地区,高海拔地区的森林面积较为稳定;广东省森林干扰集中发生在坡度小于等于25°的地区,森林恢复集中发生在坡度小于等于35°的地区。(3)广东省森林干扰在1996年后发生较为频繁,其中2011年的森林干扰面积最大;森林恢复主要集中在2001—2016年,其中2012年的森林恢复面积最大。(4)广东省的森林干扰与森林恢复主要受雨雪冰冻灾害、台风、病虫害等自然因素以及森林火灾、城市化、采伐、林业政策等人为因素的综合影响,其中雨雪冰冻灾害对广东省北部地区的常绿针叶林的影响较大,但该类型的森林恢复也较快。展开更多
结合台风属性数据和多标签分类方法,以BERT-BiLSTM(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory)为分类模型,提出基于微博文本与深度学习的台风灾情识别方法,对2010—2019年登陆广...结合台风属性数据和多标签分类方法,以BERT-BiLSTM(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory)为分类模型,提出基于微博文本与深度学习的台风灾情识别方法,对2010—2019年登陆广东省的强台风/超强台风灾情进行识别,在粗分类获取台风灾情相关微博文本的基础上,进一步细分类为交通影响、社会影响、电力影响、林业影响和内涝积水等5类灾情。结果表明:1)提出的台风灾情识别方法粗分类和细分类精度分别达到0.907和0.814;2)强台风/超强台风的灾情占比受台风强度、路径和受灾地区发展水平等因素影响而存在差异;3)台风登陆前,灾情主要为台风预防措施导致的交通影响和社会影响。台风登陆后,灾情表现出单峰和双峰特征,反映台风灾情的变化趋势和特点。展开更多
文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting col...文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.展开更多
文摘为准确掌握广东省森林干扰与森林恢复的动态特征,文章基于谷歌地球引擎(Google Earth Engine,GEE)云平台构建Landsat长时序年度无云地表反射率影像集,采用LandTrendr(Landsat-based detection of Trends in Distur-bance and Recovery)算法提取广东省1990—2020年森林干扰与森林恢复的时空分布特征,并分析其演变的驱动因素,比较不同森林类型的干扰与恢复特征。结果表明:(1)1990—2020年,广东省的森林干扰总面积约为1.35×10^(4)km^(2),集中分布在广东省西部、东部和中部小范围地区,干扰面积最大的3个城市分别为韶关、梅州、清远市;森林恢复总面积约为1.91×10^(4)km^(2),集中分布在广东省北部和西部地区,恢复面积最大的3个城市分别为韶关、清远、肇庆市。(2)广东省森林干扰与森林恢复均集中发生在海拔小于等于600 m的地区,高海拔地区的森林面积较为稳定;广东省森林干扰集中发生在坡度小于等于25°的地区,森林恢复集中发生在坡度小于等于35°的地区。(3)广东省森林干扰在1996年后发生较为频繁,其中2011年的森林干扰面积最大;森林恢复主要集中在2001—2016年,其中2012年的森林恢复面积最大。(4)广东省的森林干扰与森林恢复主要受雨雪冰冻灾害、台风、病虫害等自然因素以及森林火灾、城市化、采伐、林业政策等人为因素的综合影响,其中雨雪冰冻灾害对广东省北部地区的常绿针叶林的影响较大,但该类型的森林恢复也较快。
文摘结合台风属性数据和多标签分类方法,以BERT-BiLSTM(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory)为分类模型,提出基于微博文本与深度学习的台风灾情识别方法,对2010—2019年登陆广东省的强台风/超强台风灾情进行识别,在粗分类获取台风灾情相关微博文本的基础上,进一步细分类为交通影响、社会影响、电力影响、林业影响和内涝积水等5类灾情。结果表明:1)提出的台风灾情识别方法粗分类和细分类精度分别达到0.907和0.814;2)强台风/超强台风的灾情占比受台风强度、路径和受灾地区发展水平等因素影响而存在差异;3)台风登陆前,灾情主要为台风预防措施导致的交通影响和社会影响。台风登陆后,灾情表现出单峰和双峰特征,反映台风灾情的变化趋势和特点。
文摘文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.