The effects of rare earth samarium (Sm) additions on the microstructure and mechanical properties of as-cast Al-Si-Cu alloy were investigated by optical microscopy and scanning electron microscopy (SEM). The resul...The effects of rare earth samarium (Sm) additions on the microstructure and mechanical properties of as-cast Al-Si-Cu alloy were investigated by optical microscopy and scanning electron microscopy (SEM). The results show that Sm can effectively refine the a(Al) dendrite and the eutectic silicon. In addition, the shape of iron-rich phases changes from the Chinese script-like to slender-like ones and the volume fraction of iron-rich phases is decreased by the addition of Sm. Two kinds of Sm-rich interrnetallics are found: AlSiSm and AlSiCuSm. The plate-like AlSiCuSm phase always associates with the needle-like AISiSm phase. The mechanical properties are improved by the addition of Sm, and the good ultimate tensile strength (220 MPa) and elongation (3. 1%) are obtained from the Al-Si-Cu-1.0Sin alloy.展开更多
The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in...The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in the modified alloy with 0.3% Nd. The morphology of the α(Al) phase is significantly refined in the Nd-modified alloys. The primary Si morphology simultaneously changes into a fine, particle-like morphology, and the morphology of eutectic Si becomes fine-fibrous instead of coarse-acicular. Relatively few growth twins are observed on the surface of the Si plate in the Al-12Si-0.3Nd alloy at the optimal modification level. The mechanical property test results confirm that the mechanical properties of the as-cast Al-12 Si alloys are enhanced after the Nd addition, with optimal ultimate tensile strength(UTS) of 252 MPa and elongation(EL) of 13% at an Nd content of 0.3%. The improved mechanical properties are attributed to the refined morphology of Si phase and the formation of the Al2 Nd phase.展开更多
The evolution and distribution of Al2Sm phase in as-extruded AZ61-xSm(x=0, 1.5, 2.0 and 2.5, mass fraction, %) magnesium alloys during semi-solid isothermal heat treatment were investigated. The results showed that ...The evolution and distribution of Al2Sm phase in as-extruded AZ61-xSm(x=0, 1.5, 2.0 and 2.5, mass fraction, %) magnesium alloys during semi-solid isothermal heat treatment were investigated. The results showed that when as-extruded AZ61 magnesium alloys were modified with Sm, the smaller and rounder grains were obtained during semi-solid isothermal heat treatment. When the Sm content is 2.0%(mass fraction), the average size of the globular grains reached the smallest value of 90 μm. Although a few Al2Sm particles existed in the α-Mg grains, most of Al2Sm particles solidified at the edge of the globular grains with the width of 20 μm. These phenomena are mainly attributed to the forces acting on Al2Sm particles in front of the solid-liquid interface, leading to Al2Sm particles accumulating at the solid-liquid interface and then solidifying at the edge of the globular grains in the quenching process.展开更多
基金Project(51165032)supported by the National Natural Science Foundation of ChinaProject(20122BAB216017)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(2011-TW-03)supported by the Open Foundation of Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials,China
文摘The effects of rare earth samarium (Sm) additions on the microstructure and mechanical properties of as-cast Al-Si-Cu alloy were investigated by optical microscopy and scanning electron microscopy (SEM). The results show that Sm can effectively refine the a(Al) dendrite and the eutectic silicon. In addition, the shape of iron-rich phases changes from the Chinese script-like to slender-like ones and the volume fraction of iron-rich phases is decreased by the addition of Sm. Two kinds of Sm-rich interrnetallics are found: AlSiSm and AlSiCuSm. The plate-like AlSiCuSm phase always associates with the needle-like AISiSm phase. The mechanical properties are improved by the addition of Sm, and the good ultimate tensile strength (220 MPa) and elongation (3. 1%) are obtained from the Al-Si-Cu-1.0Sin alloy.
基金Projects(5140521651165032)supported by the National Natural Science Foundation of China+3 种基金Project(20151BAB216018)supported by the Natural Science Foundation of Jiangxi ProvinceChinaProject(GJJ14200)supported by the Education Commission Foundation of Jiangxi ProvinceChina
文摘The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in the modified alloy with 0.3% Nd. The morphology of the α(Al) phase is significantly refined in the Nd-modified alloys. The primary Si morphology simultaneously changes into a fine, particle-like morphology, and the morphology of eutectic Si becomes fine-fibrous instead of coarse-acicular. Relatively few growth twins are observed on the surface of the Si plate in the Al-12Si-0.3Nd alloy at the optimal modification level. The mechanical property test results confirm that the mechanical properties of the as-cast Al-12 Si alloys are enhanced after the Nd addition, with optimal ultimate tensile strength(UTS) of 252 MPa and elongation(EL) of 13% at an Nd content of 0.3%. The improved mechanical properties are attributed to the refined morphology of Si phase and the formation of the Al2 Nd phase.
基金Project(51405216) supported by the National Natural Science Foundation of ChinaProject(20153BCB23023) supported by the Training Programme Foundation for Young Scientists of Jiangxi Province,China
文摘The evolution and distribution of Al2Sm phase in as-extruded AZ61-xSm(x=0, 1.5, 2.0 and 2.5, mass fraction, %) magnesium alloys during semi-solid isothermal heat treatment were investigated. The results showed that when as-extruded AZ61 magnesium alloys were modified with Sm, the smaller and rounder grains were obtained during semi-solid isothermal heat treatment. When the Sm content is 2.0%(mass fraction), the average size of the globular grains reached the smallest value of 90 μm. Although a few Al2Sm particles existed in the α-Mg grains, most of Al2Sm particles solidified at the edge of the globular grains with the width of 20 μm. These phenomena are mainly attributed to the forces acting on Al2Sm particles in front of the solid-liquid interface, leading to Al2Sm particles accumulating at the solid-liquid interface and then solidifying at the edge of the globular grains in the quenching process.