针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型...针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型繁杂、故障穿越性能等因素制约,其设计裕度受到限制。该文通过LCC-HVDC阻抗重塑实现系统次/超同步振荡抑制。首先,提出送端换流站定触发角控制、受端换流站定直流电流控制的LCC-HVDC阻抗重塑控制策略,建立计及阻抗重塑的LCC-HVDC阻抗解析模型,并验证阻抗模型的准确性。然后,对比分析重塑前后阻抗特性变化,阐述阻抗重塑控制策略的作用机理,消除原有送端换流站直流电流环与功率电路重叠效应所产生的负阻尼。进一步,基于LCC-HVDC阻抗重塑,优化新能源并网点系统阻抗特性,提升直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)以及光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统稳定裕度,消除系统次/超同步振荡风险。最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的基于LCC-HVDC阻抗重塑振荡抑制策略的有效性。展开更多
该文基于系列文章1建立的电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)阻抗模型,开展新能源基地经LCC-HVDC送出系统阻抗特性和振荡机理分析。首先,研究LCC-HVDC送端交流端口阻抗...该文基于系列文章1建立的电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)阻抗模型,开展新能源基地经LCC-HVDC送出系统阻抗特性和振荡机理分析。首先,研究LCC-HVDC送端交流端口阻抗与阀本体交流阻抗、交流滤波器阻抗间的构成关系,分析直流线路、受端换流站、受端电网强度对送端换流站阀本体交流阻抗的主导影响;然后,研究送端换流站直流电流环对阀本体交流阻抗的重叠效应,分析送端换流站交流端口阻抗次/超同步频段负阻尼特性形成机理,并论述受端换流站和受端电网强度对送端交流端口阻抗特性的交互影响;接下来,建立新能源基地经LCC-HVDC送出系统等值模型,研究送端系统振荡边界条件,阐明LCC-HVDC对新能源并网点阻抗特性影响的变化规律,揭示直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)、光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统次/超同步振荡机理;最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的次/超同步振荡机理的正确性和通用性。展开更多
我国北方地区的热电联产机组(combined heat and power,CHP)装机容量较大,在供暖期受“以热定电”约束产生大量碳排放。在CHP机组中加入碳捕集设备(carbon capture and storage,CCS)能减少其碳排放,但加剧了CHP机组的电、热耦合,因此,...我国北方地区的热电联产机组(combined heat and power,CHP)装机容量较大,在供暖期受“以热定电”约束产生大量碳排放。在CHP机组中加入碳捕集设备(carbon capture and storage,CCS)能减少其碳排放,但加剧了CHP机组的电、热耦合,因此,该文引入电锅炉及储热装置,为CCS辅助供热,针对含电锅炉辅助供热的CHP-CCS机组的电热系统低碳调度开展研究。首先研究具有储热CHP-CCS机组的运行特性模型,然后建立考虑碳交易成本的含CHP-CCS机组的电热系统低碳调度模型,其中采用模糊机会约束描述风电及负荷的不确定性。最后以改进的IEEE 30节点系统和西北地区某实际系统为算例,分析不同热源容量及置信水平对电热系统运行经济性、碳排放及弃风的作用,给出了电热系统日优化调度方案。展开更多
文摘针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型繁杂、故障穿越性能等因素制约,其设计裕度受到限制。该文通过LCC-HVDC阻抗重塑实现系统次/超同步振荡抑制。首先,提出送端换流站定触发角控制、受端换流站定直流电流控制的LCC-HVDC阻抗重塑控制策略,建立计及阻抗重塑的LCC-HVDC阻抗解析模型,并验证阻抗模型的准确性。然后,对比分析重塑前后阻抗特性变化,阐述阻抗重塑控制策略的作用机理,消除原有送端换流站直流电流环与功率电路重叠效应所产生的负阻尼。进一步,基于LCC-HVDC阻抗重塑,优化新能源并网点系统阻抗特性,提升直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)以及光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统稳定裕度,消除系统次/超同步振荡风险。最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的基于LCC-HVDC阻抗重塑振荡抑制策略的有效性。
文摘该文基于系列文章1建立的电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)阻抗模型,开展新能源基地经LCC-HVDC送出系统阻抗特性和振荡机理分析。首先,研究LCC-HVDC送端交流端口阻抗与阀本体交流阻抗、交流滤波器阻抗间的构成关系,分析直流线路、受端换流站、受端电网强度对送端换流站阀本体交流阻抗的主导影响;然后,研究送端换流站直流电流环对阀本体交流阻抗的重叠效应,分析送端换流站交流端口阻抗次/超同步频段负阻尼特性形成机理,并论述受端换流站和受端电网强度对送端交流端口阻抗特性的交互影响;接下来,建立新能源基地经LCC-HVDC送出系统等值模型,研究送端系统振荡边界条件,阐明LCC-HVDC对新能源并网点阻抗特性影响的变化规律,揭示直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)、光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统次/超同步振荡机理;最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的次/超同步振荡机理的正确性和通用性。
文摘我国北方地区的热电联产机组(combined heat and power,CHP)装机容量较大,在供暖期受“以热定电”约束产生大量碳排放。在CHP机组中加入碳捕集设备(carbon capture and storage,CCS)能减少其碳排放,但加剧了CHP机组的电、热耦合,因此,该文引入电锅炉及储热装置,为CCS辅助供热,针对含电锅炉辅助供热的CHP-CCS机组的电热系统低碳调度开展研究。首先研究具有储热CHP-CCS机组的运行特性模型,然后建立考虑碳交易成本的含CHP-CCS机组的电热系统低碳调度模型,其中采用模糊机会约束描述风电及负荷的不确定性。最后以改进的IEEE 30节点系统和西北地区某实际系统为算例,分析不同热源容量及置信水平对电热系统运行经济性、碳排放及弃风的作用,给出了电热系统日优化调度方案。