针对回声状态网络(Echo State Networks,ESNs)输入序列延迟时间(和嵌入维数D的选择以及储备池的适应性问题,利用自相关性分析法从被预测样本序列构建ESNs网络输入,并通过移动通信话务量的预测问题,采用实验分析的方法讨论了储备...针对回声状态网络(Echo State Networks,ESNs)输入序列延迟时间(和嵌入维数D的选择以及储备池的适应性问题,利用自相关性分析法从被预测样本序列构建ESNs网络输入,并通过移动通信话务量的预测问题,采用实验分析的方法讨论了储备池参数选择对于时间序列预测性能的影响.与采用ARMA和BP神经网络的预测方法相比,新方法在保证预测精度和效率的情况下,具有更好的泛化能力.展开更多
提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识...提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识输入数据空间中的模糊模式类,并通过定义各模糊模式类与决策类别之间的类型映射关系ftype:Ci→y,以及输入数据对各模式类分类规则的匹配度(Degree of Fulfillment,DoF(x))概念,建立起相应的FRDM模型.不同数据集的实验测试结果表明,与Kowalczyk的RDM方法相比,文中方法具有更好的数据概括能力、更强的噪声数据处理能力和更高的搜索效率.展开更多
文摘针对回声状态网络(Echo State Networks,ESNs)输入序列延迟时间(和嵌入维数D的选择以及储备池的适应性问题,利用自相关性分析法从被预测样本序列构建ESNs网络输入,并通过移动通信话务量的预测问题,采用实验分析的方法讨论了储备池参数选择对于时间序列预测性能的影响.与采用ARMA和BP神经网络的预测方法相比,新方法在保证预测精度和效率的情况下,具有更好的泛化能力.
文摘提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识输入数据空间中的模糊模式类,并通过定义各模糊模式类与决策类别之间的类型映射关系ftype:Ci→y,以及输入数据对各模式类分类规则的匹配度(Degree of Fulfillment,DoF(x))概念,建立起相应的FRDM模型.不同数据集的实验测试结果表明,与Kowalczyk的RDM方法相比,文中方法具有更好的数据概括能力、更强的噪声数据处理能力和更高的搜索效率.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60575036) 黑龙江省教育厅科技基金(the Sci- ence Foundation of Educational Department of Heilongjiang Province of China under Grant No.11511074)哈尔滨理工大学优秀拔尖创新人才培养基金 (the Science Foundation for Excellent & Creative Scholars of Harbin University of Sci. & Tech. under Grant No. 20070105)