针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首...针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首先利用ERNIE对数据集进行编码,然后利用改进后的DPCNN和BiGRU同时提取新闻文本的特征,再将两者提取的特征进行拼合并经过Softmax得到最终结果。为了使EGC模型适用于农业新闻分类领域,对DPCNN进行改进,减少它的卷积层以保留更多特征。实验结果表明,与ERNIE相比,EGC模型的精确率、召回率和F1分数别提升了1.47、1.29和1.42个百分点,优于传统分类模型。展开更多
文摘针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首先利用ERNIE对数据集进行编码,然后利用改进后的DPCNN和BiGRU同时提取新闻文本的特征,再将两者提取的特征进行拼合并经过Softmax得到最终结果。为了使EGC模型适用于农业新闻分类领域,对DPCNN进行改进,减少它的卷积层以保留更多特征。实验结果表明,与ERNIE相比,EGC模型的精确率、召回率和F1分数别提升了1.47、1.29和1.42个百分点,优于传统分类模型。