利利用1960—2011年湖北省81个气象站气象观测资料和湖北省2004—2012年220~500 k V高压输电线路覆冰事故资料以及海拔高度、坡度、坡向等9类地形数据信息资料,给出风口、突出山体、迎风坡和背风坡4种特殊地形的判断指标,分析特殊地形...利利用1960—2011年湖北省81个气象站气象观测资料和湖北省2004—2012年220~500 k V高压输电线路覆冰事故资料以及海拔高度、坡度、坡向等9类地形数据信息资料,给出风口、突出山体、迎风坡和背风坡4种特殊地形的判断指标,分析特殊地形因子对电线覆冰的影响,并对湖北省冰区分布图进行地形订正。结果表明:风口判断指标为冬季(当年12月至翌年2月)日均风速大于8 m·s^-1的日数超过1.56 d·a^-1,迎风坡判断指标为坡向0°~45°或315°~360°且坡度大于10°,背风坡判断指标为坡向135°~225°且坡度大于10°,突出山体判断指标为起伏度大于200 m且海拔高度大于起伏度;4种特殊地形下冰厚订正系数分别为1.75、1.62、0.68和1.82;风口处影响覆冰的主导气象因子为风速,迎风坡处影响覆冰的主导气象因子为降水量,突出山体处影响覆冰的主导气象因子为液水含量,气温对3种特殊地形下的冰厚变化均有显著影响;经过地形订正后的冰区图,能更好地反映鄂西南山区、鄂北中部和西部等地受特殊地形影响而出现的较严重覆冰区。展开更多
轴向位移故障是电力变压器常见故障之一,为此结合有限元模型与频率响应法,提出了一种基于“结构参数–电气参数–试验结果”诊断思路的电力变压器轴向位移故障诊断方法。基于实际变压器的结构尺寸及材料特性在Ansoft Maxwell中建立变压...轴向位移故障是电力变压器常见故障之一,为此结合有限元模型与频率响应法,提出了一种基于“结构参数–电气参数–试验结果”诊断思路的电力变压器轴向位移故障诊断方法。基于实际变压器的结构尺寸及材料特性在Ansoft Maxwell中建立变压器有限元模型,计算了变压器主要电气参数(对地电容、饼间电容等),分析了不同轴向位移故障程度下电气参数的变化。为研究变压器绕组轴向位移故障对变压器频率响应曲线的影响,运用有限元模型中求解得到的电气参数,搭建了变压器等值电路模型。仿真了不同轴向位移程度下变压器的频率响应曲线的变化,结果表明:轴向位移故障会引起频率响应曲线在150 k Hz左右产生幅值变化,同时导致200-250 k Hz频率带及350-450 k Hz频率带上谐振峰的整体右移。仿真结果与现场试验表现出较好的一致性,因此,提出的故障诊断方法可以对现有判据进行补充,以提高变压器轴向位移故障诊断的准确度。展开更多
文摘轴向位移故障是电力变压器常见故障之一,为此结合有限元模型与频率响应法,提出了一种基于“结构参数–电气参数–试验结果”诊断思路的电力变压器轴向位移故障诊断方法。基于实际变压器的结构尺寸及材料特性在Ansoft Maxwell中建立变压器有限元模型,计算了变压器主要电气参数(对地电容、饼间电容等),分析了不同轴向位移故障程度下电气参数的变化。为研究变压器绕组轴向位移故障对变压器频率响应曲线的影响,运用有限元模型中求解得到的电气参数,搭建了变压器等值电路模型。仿真了不同轴向位移程度下变压器的频率响应曲线的变化,结果表明:轴向位移故障会引起频率响应曲线在150 k Hz左右产生幅值变化,同时导致200-250 k Hz频率带及350-450 k Hz频率带上谐振峰的整体右移。仿真结果与现场试验表现出较好的一致性,因此,提出的故障诊断方法可以对现有判据进行补充,以提高变压器轴向位移故障诊断的准确度。