功能验证在处理器芯片开发流程中所占用的时间超过70%,因此优化提升功能验证环节的效率非常必要.软件仿真等传统验证方法提供了包括断言等多种验证机制,以提升验证的细粒度可见性和自检查能力,但是软件仿真运行速度较慢,在高效性方面有...功能验证在处理器芯片开发流程中所占用的时间超过70%,因此优化提升功能验证环节的效率非常必要.软件仿真等传统验证方法提供了包括断言等多种验证机制,以提升验证的细粒度可见性和自检查能力,但是软件仿真运行速度较慢,在高效性方面有明显不足.基于FPGA的硬件原型验证方法能极大地加速验证性能,但其调试能力较弱,虽能快速发现漏洞,但难以定位漏洞出现的具体位置和根本原因,存在有效性不足难题.为同时解决上述功能验证有效性与高效性的问题,提出一种将不可综合的断言语言SVA(SystemVerilog Assertion)自动转换成逻辑等效但可综合的RTL电路的方法,聚焦于断言这一类对设计进行非全局建模、纵向贯穿各抽象层级的验证方式,对基于全局指令集架构(instruction set architecture,ISA)模型的验证能力进行补足.同时,结合FPGA细粒度并行化、高度可扩展的优势,对处理器的验证过程进行硬件加速,提升了处理器的开发效率.实现了一个端到端的硬件断言平台,集成对SVA进行硬件化的完整工具链,并统计运行在FPGA上的硬件化断言的触发和覆盖率情况.实验表明,和软件仿真相比,所提方法能取得超过2万倍的验证效率提升.展开更多
传统的三维图形处理器通过裁剪操作获取三角形的可见区域。然而,裁剪操作的延迟长且硬件开销高,大量的裁剪操作会降低图形处理器的性能。本文设计了一款基于OpenGL ES 2.0标准的三维图形处理器芯片,采用了统一渲染架构。该图形处理器采...传统的三维图形处理器通过裁剪操作获取三角形的可见区域。然而,裁剪操作的延迟长且硬件开销高,大量的裁剪操作会降低图形处理器的性能。本文设计了一款基于OpenGL ES 2.0标准的三维图形处理器芯片,采用了统一渲染架构。该图形处理器采用高效的无裁剪图形流水线结构,消除了裁剪所带来的硬件开销和性能损耗。此外,本文为该图形处理器设计了一个符合IEEE-754标准的三维向量内积(DP3)计算单元,用于固定功能流水线,以提高图形处理器的性能,并消除图形渲染过程中浮点乘加操作的误差,增强了图形处理器的图形渲染鲁棒性。该三维图形处理器每秒能够处理500 M个顶点和8 G个纹素,功耗为1000 mW,采用了28 nm工艺,面积为7.92 mm^(2)。实现结果表明,与之前的工作相比,本文设计的图形处理器的性能-功耗比提高了27.8%。展开更多
随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交...随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交换机制由于慢速磁盘的读写速度限制,无法被广泛应用.近年来,得益于超低延迟固态硬盘(solid state drive,SSD)的快速发展,页交换机制可以利用其低延迟的读写特性,提升页交换效率.然而,在低I/O延迟的情况下,传统页交换机制的I/O栈存在巨大的软件开销.首先对使用超低延迟SSD的Linux页交换机制进行测试与分析,发现现有页交换机制的主要瓶颈在于发送请求时存在队头阻塞问题、I/O合并和调度开销,以及内核返回路径上的中断处理和直接内存回收开销.基于分析结果,提出基于超低延迟SSD的页交换机制Ultraswap.Ultraswap在Linux I/O栈的基础上增加对轮询请求的处理,并降低I/O合并与调度开销,实现轻量级的I/O栈.基于Ultraswap的I/O栈,对内核页交换机制的换入与换出路径进一步优化.通过优化对缺页、直接内存回收的处理,降低页交换机制关键路径上的时间开销.实验结果表明Ultraswap在应用测试场景下相比Linux页交换机制能够提升19%的平均性能;在可使用内存比例为20%的情况下,Ultraswap可达到33%的性能提升.展开更多
将互动直播部署在边缘计算环境中,可以在网络边缘对直播视频进行转码和传输,通过用户附近的边缘服务器提供低延迟的直播服务.然而,在多边缘服务器、多用户场景下存在着直播用户分配问题,导致直播用户体验质量(quality of experience, Q...将互动直播部署在边缘计算环境中,可以在网络边缘对直播视频进行转码和传输,通过用户附近的边缘服务器提供低延迟的直播服务.然而,在多边缘服务器、多用户场景下存在着直播用户分配问题,导致直播用户体验质量(quality of experience, QoE)无法得到保证.为了提高直播用户QoE,需要根据用户的个性化需求合理地分配服务器资源.首先分析真实数据集,发现大多数用户处于多基站重叠覆盖区域内,并且不同用户的互动需求存在差异;然后根据互动直播的特点提出一种适用于边缘计算场景的用户QoE模型,该模型综合考虑了直播用户的视频质量和互动体验;最后设计一种高效的直播用户分配算法,优化了多边缘服务器重叠覆盖区域内的直播用户QoE.仿真实验表明,所提出的用户分配策略可为用户提供高码率和低延迟的直播视频,同时能有效降低边缘服务器切换次数和码率抖动,使直播用户QoE相较于其他策略提升超过19%.展开更多
芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软...芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软件工具链是芯片解决方案的组成部分,并在芯片性能和开发中发挥重要作用.然而,当使用第三方芯粒进行芯片敏捷定制时,第三方芯粒所提供的专用工具链无法预知整个芯片的资源,因此无法解决敏捷定制的深度学习芯片的任务部署问题,而为敏捷定制的芯片设计全新的工具链需要大量的时间成本,失去了芯片敏捷定制的优势.因此,提出一种面向深度学习集成芯片的可扩展框架(scalable framework for integrated deep learning chips)--Puzzle,它包含从处理任务输入到运行时管理芯片资源的完整流程,并自适应地生成高效的任务调度和资源分配方案,降低冗余访存和芯粒间通信开销.实验结果表明,该可扩展框架为深度学习集成芯片生成的任务部署方案可自适应于不同的工作负载和硬件资源配置,与现有方法相比平均降低27.5%的工作负载运行延迟.展开更多
文摘功能验证在处理器芯片开发流程中所占用的时间超过70%,因此优化提升功能验证环节的效率非常必要.软件仿真等传统验证方法提供了包括断言等多种验证机制,以提升验证的细粒度可见性和自检查能力,但是软件仿真运行速度较慢,在高效性方面有明显不足.基于FPGA的硬件原型验证方法能极大地加速验证性能,但其调试能力较弱,虽能快速发现漏洞,但难以定位漏洞出现的具体位置和根本原因,存在有效性不足难题.为同时解决上述功能验证有效性与高效性的问题,提出一种将不可综合的断言语言SVA(SystemVerilog Assertion)自动转换成逻辑等效但可综合的RTL电路的方法,聚焦于断言这一类对设计进行非全局建模、纵向贯穿各抽象层级的验证方式,对基于全局指令集架构(instruction set architecture,ISA)模型的验证能力进行补足.同时,结合FPGA细粒度并行化、高度可扩展的优势,对处理器的验证过程进行硬件加速,提升了处理器的开发效率.实现了一个端到端的硬件断言平台,集成对SVA进行硬件化的完整工具链,并统计运行在FPGA上的硬件化断言的触发和覆盖率情况.实验表明,和软件仿真相比,所提方法能取得超过2万倍的验证效率提升.
文摘随着内存密集型应用的快速发展,应用对单机内存容量的需求日益增大.然而,受到颗粒密度的限制,内存容量的扩展度较低.页交换机制是进行内存扩展的经典技术,该机制通过将较少使用的内存页面暂存在存储设备,以达到扩展内存的目的.过去页交换机制由于慢速磁盘的读写速度限制,无法被广泛应用.近年来,得益于超低延迟固态硬盘(solid state drive,SSD)的快速发展,页交换机制可以利用其低延迟的读写特性,提升页交换效率.然而,在低I/O延迟的情况下,传统页交换机制的I/O栈存在巨大的软件开销.首先对使用超低延迟SSD的Linux页交换机制进行测试与分析,发现现有页交换机制的主要瓶颈在于发送请求时存在队头阻塞问题、I/O合并和调度开销,以及内核返回路径上的中断处理和直接内存回收开销.基于分析结果,提出基于超低延迟SSD的页交换机制Ultraswap.Ultraswap在Linux I/O栈的基础上增加对轮询请求的处理,并降低I/O合并与调度开销,实现轻量级的I/O栈.基于Ultraswap的I/O栈,对内核页交换机制的换入与换出路径进一步优化.通过优化对缺页、直接内存回收的处理,降低页交换机制关键路径上的时间开销.实验结果表明Ultraswap在应用测试场景下相比Linux页交换机制能够提升19%的平均性能;在可使用内存比例为20%的情况下,Ultraswap可达到33%的性能提升.
文摘将互动直播部署在边缘计算环境中,可以在网络边缘对直播视频进行转码和传输,通过用户附近的边缘服务器提供低延迟的直播服务.然而,在多边缘服务器、多用户场景下存在着直播用户分配问题,导致直播用户体验质量(quality of experience, QoE)无法得到保证.为了提高直播用户QoE,需要根据用户的个性化需求合理地分配服务器资源.首先分析真实数据集,发现大多数用户处于多基站重叠覆盖区域内,并且不同用户的互动需求存在差异;然后根据互动直播的特点提出一种适用于边缘计算场景的用户QoE模型,该模型综合考虑了直播用户的视频质量和互动体验;最后设计一种高效的直播用户分配算法,优化了多边缘服务器重叠覆盖区域内的直播用户QoE.仿真实验表明,所提出的用户分配策略可为用户提供高码率和低延迟的直播视频,同时能有效降低边缘服务器切换次数和码率抖动,使直播用户QoE相较于其他策略提升超过19%.
文摘芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软件工具链是芯片解决方案的组成部分,并在芯片性能和开发中发挥重要作用.然而,当使用第三方芯粒进行芯片敏捷定制时,第三方芯粒所提供的专用工具链无法预知整个芯片的资源,因此无法解决敏捷定制的深度学习芯片的任务部署问题,而为敏捷定制的芯片设计全新的工具链需要大量的时间成本,失去了芯片敏捷定制的优势.因此,提出一种面向深度学习集成芯片的可扩展框架(scalable framework for integrated deep learning chips)--Puzzle,它包含从处理任务输入到运行时管理芯片资源的完整流程,并自适应地生成高效的任务调度和资源分配方案,降低冗余访存和芯粒间通信开销.实验结果表明,该可扩展框架为深度学习集成芯片生成的任务部署方案可自适应于不同的工作负载和硬件资源配置,与现有方法相比平均降低27.5%的工作负载运行延迟.