为挖掘感知点云几何特征并通过特征增强的方式进一步提高点云语义分割效果,提出了一种基于特征增强的点云语义分割网络。首先,通过设计点云的几何特征感知(GFSOP)模块赋予网络点云局部几何结构的感知能力,捕获点间的空间特征以强化语义...为挖掘感知点云几何特征并通过特征增强的方式进一步提高点云语义分割效果,提出了一种基于特征增强的点云语义分割网络。首先,通过设计点云的几何特征感知(GFSOP)模块赋予网络点云局部几何结构的感知能力,捕获点间的空间特征以强化语义表征,并利用分层提取特征思想获得多尺度特征。同时,使用空间注意力和通道注意力融合预测点云语义标签,并通过强化空间关联性和通道依赖性提升分割性能。在室内数据集S3DIS(Stanford large-scale 3D Indoor Spaces)上的实验结果显示,所提网络相较于PointNet++在平均交并比(mIoU)上提升了5.7个百分点,在总体准确度(OA)上提升了3.1个百分点,且在存在噪声、点云密度不均和边界不清晰等问题的点云上表现出更强的泛化性能和更加鲁棒的分割效果。展开更多
文摘为挖掘感知点云几何特征并通过特征增强的方式进一步提高点云语义分割效果,提出了一种基于特征增强的点云语义分割网络。首先,通过设计点云的几何特征感知(GFSOP)模块赋予网络点云局部几何结构的感知能力,捕获点间的空间特征以强化语义表征,并利用分层提取特征思想获得多尺度特征。同时,使用空间注意力和通道注意力融合预测点云语义标签,并通过强化空间关联性和通道依赖性提升分割性能。在室内数据集S3DIS(Stanford large-scale 3D Indoor Spaces)上的实验结果显示,所提网络相较于PointNet++在平均交并比(mIoU)上提升了5.7个百分点,在总体准确度(OA)上提升了3.1个百分点,且在存在噪声、点云密度不均和边界不清晰等问题的点云上表现出更强的泛化性能和更加鲁棒的分割效果。
文摘根据轴承温度标准,通过分析主轴温度的差异性变化来预测故障存在的可能性。首先,对数据进行清洗,并以线性插值法和贝叶斯–高斯CP(canonical decomposition/parallel factor)模型混合方式对缺失数据进行扩增。然后,将自注意力机制加入ConvLSTM(convolution long short-term)网络搭建主轴状态监测模型。通过自注意力机制消融实验,验证了自注意力机制能够提高ConvLSTM的预测准确率。进行了与LSTM、双向循环神经网络和CNN-LSTM(convolutional neural networks-long short term)模型的对比实验。结果表明,ConvLSTM对主轴温度预测的精确度高。最后,通过实际案例验证了模型的有效性。