[目的]探究山东省不同气候分区年降水量的时空特征,为该地区气候分析、防灾减灾提供更加区域性的参考依据。[方法]根据山东省95个国家地面气象观测站1991—2020年降水年值数据,首先对山东省年降水场进行气候分区,然后通过相关统计方法...[目的]探究山东省不同气候分区年降水量的时空特征,为该地区气候分析、防灾减灾提供更加区域性的参考依据。[方法]根据山东省95个国家地面气象观测站1991—2020年降水年值数据,首先对山东省年降水场进行气候分区,然后通过相关统计方法分析各分区降水的时空变化特征。[结果](1)山东省各降水模态降水偏少的年份更多,降水偏多的年份降水强度更大,年代际变化均较为明显,但各模态降水偏多偏少的年份分布及强度变化有所不同。(2)山东省年降水量大致由东南向西北递减,年降水场划分为东南沿海区(Ⅰ区)、西北平原区(Ⅱ区)和中部山地区(Ⅲ区)3个区域,各降水分区年降水均呈不显著增加趋势,趋势率各不相同,突变均不明显。(3)山东省各降水分区年降水量均具有较为明显的周期性特征,东南沿海区年降水场存在2个较为明显的能量中心,中心尺度均为2~3 a,未来变化具有强持续性;西北平原区年降水场存在3个较为明显的能量中心,中心尺度分别为5~7 a, 3 a和2~3 a,未来变化具有持续性;中部山地区年降水场存在2个较为明显的能量中心,中心尺度分别为2~3 a, 6 a,未来变化具有强持续性。[结论]山东省降水偏少的年份更多,降水偏多的年份降水强度更大,年降水场大致可分为3个分区,各分区年降水量均呈不显著增加趋势,均具有较为明显的周期性特征,且未来变化均具有持续性。展开更多
基于滚动需求评估的原则和结构函数,评估山东地面气象观测站网水平分辨率(平均站间距),研究山东国家级基准、基本及常规气象观测站气温、相对湿度、降水量的最佳布站方案和最佳布站距离。结果表明:(1)国家气象观测站和区域气象观测站各...基于滚动需求评估的原则和结构函数,评估山东地面气象观测站网水平分辨率(平均站间距),研究山东国家级基准、基本及常规气象观测站气温、相对湿度、降水量的最佳布站方案和最佳布站距离。结果表明:(1)国家气象观测站和区域气象观测站各要素水平分辨率由小到大依次为降水量、气温、风向和风速、相对湿度、气压,国家级基准、基本及常规气象观测站各要素水平分辨率均相同,应用气象观测站气温与相对湿度要素的水平分辨率小于风向和风速及降水量。(2)除全球数值天气预报和海洋应用领域外,山东4类地面气象观测站各要素的水平分辨率相比观测系统能力分析和审查工具(Observation System Capability Analysis and Review,OSCAR)中各应用领域突破值尚有较大的差距。(3)山东国家级基准、基本及常规气象观测站的气温、相对湿度、降水量的四季结构函数整体上随距离的增加而增大。气温、相对湿度、降水量的线段内插、正三角形内插和正方形内插标准误差与距离均呈线性关系。在距离满足点值内插标准误差小于观测标准误差时,气温、相对湿度和降水量均为正三角形内插精度最高。(4)山东国家级基准、基本及常规气象观测站气温、相对湿度和降水量最佳的布站方案均为正三角形布设,其中气温、相对湿度、降水量的最佳布站距离应分别不超过43.6 km、63.4 km和40.3 km。展开更多
利用地面气象观测站资料、加密地面观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析数据(ECMWF Reanalysis v5,ERA5;分辨率为0.25°×0.25°)逐小时资料,对山...利用地面气象观测站资料、加密地面观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析数据(ECMWF Reanalysis v5,ERA5;分辨率为0.25°×0.25°)逐小时资料,对山东2021年11月6—8日极端暴雪过程雪水比影响因子进行研究。结果显示:此次暴雪过程平均雪水比分布总体呈“北大南小、西大东小”的分布特征,降雪初期产生的雪水比小,降雪中后期产生的雪水比大;温度偏高、云内液态水含量较高的地区雪水比较小,温度偏低、云内液态水含量较低的地区雪水比较大;雪水比与地面气温、地表温度呈负相关,地面气温与雪水比的相关性最大,积雪产生之后地表温度与雪水比变化无明显相关。展开更多
文摘[目的]探究山东省不同气候分区年降水量的时空特征,为该地区气候分析、防灾减灾提供更加区域性的参考依据。[方法]根据山东省95个国家地面气象观测站1991—2020年降水年值数据,首先对山东省年降水场进行气候分区,然后通过相关统计方法分析各分区降水的时空变化特征。[结果](1)山东省各降水模态降水偏少的年份更多,降水偏多的年份降水强度更大,年代际变化均较为明显,但各模态降水偏多偏少的年份分布及强度变化有所不同。(2)山东省年降水量大致由东南向西北递减,年降水场划分为东南沿海区(Ⅰ区)、西北平原区(Ⅱ区)和中部山地区(Ⅲ区)3个区域,各降水分区年降水均呈不显著增加趋势,趋势率各不相同,突变均不明显。(3)山东省各降水分区年降水量均具有较为明显的周期性特征,东南沿海区年降水场存在2个较为明显的能量中心,中心尺度均为2~3 a,未来变化具有强持续性;西北平原区年降水场存在3个较为明显的能量中心,中心尺度分别为5~7 a, 3 a和2~3 a,未来变化具有持续性;中部山地区年降水场存在2个较为明显的能量中心,中心尺度分别为2~3 a, 6 a,未来变化具有强持续性。[结论]山东省降水偏少的年份更多,降水偏多的年份降水强度更大,年降水场大致可分为3个分区,各分区年降水量均呈不显著增加趋势,均具有较为明显的周期性特征,且未来变化均具有持续性。
文摘基于滚动需求评估的原则和结构函数,评估山东地面气象观测站网水平分辨率(平均站间距),研究山东国家级基准、基本及常规气象观测站气温、相对湿度、降水量的最佳布站方案和最佳布站距离。结果表明:(1)国家气象观测站和区域气象观测站各要素水平分辨率由小到大依次为降水量、气温、风向和风速、相对湿度、气压,国家级基准、基本及常规气象观测站各要素水平分辨率均相同,应用气象观测站气温与相对湿度要素的水平分辨率小于风向和风速及降水量。(2)除全球数值天气预报和海洋应用领域外,山东4类地面气象观测站各要素的水平分辨率相比观测系统能力分析和审查工具(Observation System Capability Analysis and Review,OSCAR)中各应用领域突破值尚有较大的差距。(3)山东国家级基准、基本及常规气象观测站的气温、相对湿度、降水量的四季结构函数整体上随距离的增加而增大。气温、相对湿度、降水量的线段内插、正三角形内插和正方形内插标准误差与距离均呈线性关系。在距离满足点值内插标准误差小于观测标准误差时,气温、相对湿度和降水量均为正三角形内插精度最高。(4)山东国家级基准、基本及常规气象观测站气温、相对湿度和降水量最佳的布站方案均为正三角形布设,其中气温、相对湿度、降水量的最佳布站距离应分别不超过43.6 km、63.4 km和40.3 km。
文摘利用地面气象观测站资料、加密地面观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析数据(ECMWF Reanalysis v5,ERA5;分辨率为0.25°×0.25°)逐小时资料,对山东2021年11月6—8日极端暴雪过程雪水比影响因子进行研究。结果显示:此次暴雪过程平均雪水比分布总体呈“北大南小、西大东小”的分布特征,降雪初期产生的雪水比小,降雪中后期产生的雪水比大;温度偏高、云内液态水含量较高的地区雪水比较小,温度偏低、云内液态水含量较低的地区雪水比较大;雪水比与地面气温、地表温度呈负相关,地面气温与雪水比的相关性最大,积雪产生之后地表温度与雪水比变化无明显相关。