以Web of Science收录的文献题录作为数据样本,基于文献计量学方法并利用CiteSpace工具对1990-2019年计算机视觉领域的文献进行可视化分析,从时空层面揭示计算机视觉领域在不同国家(地区)、机构的发展程度;从共引文献层面把握计算机视...以Web of Science收录的文献题录作为数据样本,基于文献计量学方法并利用CiteSpace工具对1990-2019年计算机视觉领域的文献进行可视化分析,从时空层面揭示计算机视觉领域在不同国家(地区)、机构的发展程度;从共引文献层面把握计算机视觉发展脉络;从关键词和突变词角度探测计算机视觉的热点前沿。研究结果显示,从全球范围看,美国对计算机视觉的研究起步较早且一直处于领先地位,中国近年来发展迅速且在总体发文量、高校研究力量层面进步明显,英国、法国、日本、加拿大、瑞士等国近年来发展态势也较突出;马尔视觉计算理论、Canny边缘检测算法、张氏标定法、YOLO算法等许多经典算法对计算机视觉领域的发展具有里程碑式的意义;模型、分类、图像分割、追踪、识别等方向是计算机视觉领域的热点话题;深度学习、卷积神经网络、压缩感知、机器学习是计算机视觉领域近10年的前沿研究方向。展开更多
文摘以Web of Science收录的文献题录作为数据样本,基于文献计量学方法并利用CiteSpace工具对1990-2019年计算机视觉领域的文献进行可视化分析,从时空层面揭示计算机视觉领域在不同国家(地区)、机构的发展程度;从共引文献层面把握计算机视觉发展脉络;从关键词和突变词角度探测计算机视觉的热点前沿。研究结果显示,从全球范围看,美国对计算机视觉的研究起步较早且一直处于领先地位,中国近年来发展迅速且在总体发文量、高校研究力量层面进步明显,英国、法国、日本、加拿大、瑞士等国近年来发展态势也较突出;马尔视觉计算理论、Canny边缘检测算法、张氏标定法、YOLO算法等许多经典算法对计算机视觉领域的发展具有里程碑式的意义;模型、分类、图像分割、追踪、识别等方向是计算机视觉领域的热点话题;深度学习、卷积神经网络、压缩感知、机器学习是计算机视觉领域近10年的前沿研究方向。