Windows恶意软件严重侵害个人、企业甚至国家安全,为了有效发现新型恶意软件、深入剖析恶意软件的工作机制,文章提出一种基于语义分析的Windows恶意软件检测方法。该方法使用API调用之间的依赖关系描述恶意软件的行为,结合符号执行技术...Windows恶意软件严重侵害个人、企业甚至国家安全,为了有效发现新型恶意软件、深入剖析恶意软件的工作机制,文章提出一种基于语义分析的Windows恶意软件检测方法。该方法使用API调用之间的依赖关系描述恶意软件的行为,结合符号执行技术提取API调用依赖图,并将其作为软件的底层行为特征,通过模式发现和匹配方法,将API调用依赖图映射为ATT&CK(Adversarial Tactics,Techniques,and Common Knowledge)框架中的攻击技术,反映恶意软件所包含的行为语义。文章构建了支持向量机分类器,将攻击技术特征作为分类器输入进行训练和测试。实验结果表明,文章提出的方法能够有效发现新型恶意软件。展开更多
文摘Windows恶意软件严重侵害个人、企业甚至国家安全,为了有效发现新型恶意软件、深入剖析恶意软件的工作机制,文章提出一种基于语义分析的Windows恶意软件检测方法。该方法使用API调用之间的依赖关系描述恶意软件的行为,结合符号执行技术提取API调用依赖图,并将其作为软件的底层行为特征,通过模式发现和匹配方法,将API调用依赖图映射为ATT&CK(Adversarial Tactics,Techniques,and Common Knowledge)框架中的攻击技术,反映恶意软件所包含的行为语义。文章构建了支持向量机分类器,将攻击技术特征作为分类器输入进行训练和测试。实验结果表明,文章提出的方法能够有效发现新型恶意软件。