作为实现汽车自动驾驶的关键基础设施,自动驾驶地图能够提供大量准确且语义丰富的数据来帮助用户以更精细的尺度了解周边环境状况,辅助感知、定位、驾驶规划与决策控制,满足智能时代多种高层次的应用需求,进而切实推动我国自动驾驶相关...作为实现汽车自动驾驶的关键基础设施,自动驾驶地图能够提供大量准确且语义丰富的数据来帮助用户以更精细的尺度了解周边环境状况,辅助感知、定位、驾驶规划与决策控制,满足智能时代多种高层次的应用需求,进而切实推动我国自动驾驶相关领域的发展与商业化应用。自动驾驶地图的数据标准作为自动驾驶地图生产应用的指导性规范之一,是自动驾驶地图数据标准化的基准。当前我国自动驾驶相关领域对自动驾驶地图标准化的需求迫切,地图数据标准化已成为业界共同关注的热点问题。为解决自动驾驶地图数据标准化问题,切实推动自动驾驶地图的高效发展,本文对自动驾驶地图的数据标准进行比较研究。首先介绍国内外主流的自动驾驶地图数据标准,然后针对其中4种:导航数据标准(navigation data standard,NDS)、OpenDrive、智能运输系统智能驾驶电子地图数据模型与交换格式和道路高精度电子导航地图数据规范进行分析比较研究,主要从数据结构、数据模型、地图渲染和协同应用4个维度展开,并在各个维度上给出数据标准编制时建议遵循的原则。基于分析比较研究的结果,总结出自动驾驶地图数据标准编制时建议遵循的原则。通过对自动驾驶地图的数据标准进行分析比较研究,归纳总结出数据标准编制时建议遵循的原则,这些建议遵循的编制原则对我国相应规格标准的制定具有借鉴意义。展开更多
目的SLAM(simultaneous localization and mapping)是移动机器人在未知环境进行探索、感知和导航的关键技术。激光SLAM测量精确,便于机器人导航和路径规划,但缺乏语义信息。而视觉SLAM的图像能提供丰富的语义信息,特征区分度更高,但其...目的SLAM(simultaneous localization and mapping)是移动机器人在未知环境进行探索、感知和导航的关键技术。激光SLAM测量精确,便于机器人导航和路径规划,但缺乏语义信息。而视觉SLAM的图像能提供丰富的语义信息,特征区分度更高,但其构建的地图不能直接用于路径规划和导航。为了实现移动机器人构建语义地图并在地图上进行路径规划,本文提出一种语义栅格建图方法。方法建立可同步获取激光和语义数据的激光—相机系统,将采集的激光分割数据与目标检测算法获得的物体包围盒进行匹配,得到各物体对应的语义激光分割数据。将连续多帧语义激光分割数据同步融入占据栅格地图。对具有不同语义类别的栅格进行聚类,得到标注物体类别和轮廓的语义栅格地图。此外,针对语义栅格地图发布导航任务,利用路径搜索算法进行路径规划,并对其进行改进。结果在实验室走廊和办公室分别进行了语义栅格建图的实验,并与原始栅格地图进行了比较。在语义栅格地图的基础上进行了路径规划,并采用了语义赋权算法对易移动物体的路径进行对比。结论多种环境下的实验表明本文方法能获得与真实环境一致性较高、标注环境中物体类别和轮廓的语义栅格地图,且实验硬件结构简单、成本低、性能良好,适用于智能化机器人的导航和路径规划。展开更多
文摘作为实现汽车自动驾驶的关键基础设施,自动驾驶地图能够提供大量准确且语义丰富的数据来帮助用户以更精细的尺度了解周边环境状况,辅助感知、定位、驾驶规划与决策控制,满足智能时代多种高层次的应用需求,进而切实推动我国自动驾驶相关领域的发展与商业化应用。自动驾驶地图的数据标准作为自动驾驶地图生产应用的指导性规范之一,是自动驾驶地图数据标准化的基准。当前我国自动驾驶相关领域对自动驾驶地图标准化的需求迫切,地图数据标准化已成为业界共同关注的热点问题。为解决自动驾驶地图数据标准化问题,切实推动自动驾驶地图的高效发展,本文对自动驾驶地图的数据标准进行比较研究。首先介绍国内外主流的自动驾驶地图数据标准,然后针对其中4种:导航数据标准(navigation data standard,NDS)、OpenDrive、智能运输系统智能驾驶电子地图数据模型与交换格式和道路高精度电子导航地图数据规范进行分析比较研究,主要从数据结构、数据模型、地图渲染和协同应用4个维度展开,并在各个维度上给出数据标准编制时建议遵循的原则。基于分析比较研究的结果,总结出自动驾驶地图数据标准编制时建议遵循的原则。通过对自动驾驶地图的数据标准进行分析比较研究,归纳总结出数据标准编制时建议遵循的原则,这些建议遵循的编制原则对我国相应规格标准的制定具有借鉴意义。
文摘目的SLAM(simultaneous localization and mapping)是移动机器人在未知环境进行探索、感知和导航的关键技术。激光SLAM测量精确,便于机器人导航和路径规划,但缺乏语义信息。而视觉SLAM的图像能提供丰富的语义信息,特征区分度更高,但其构建的地图不能直接用于路径规划和导航。为了实现移动机器人构建语义地图并在地图上进行路径规划,本文提出一种语义栅格建图方法。方法建立可同步获取激光和语义数据的激光—相机系统,将采集的激光分割数据与目标检测算法获得的物体包围盒进行匹配,得到各物体对应的语义激光分割数据。将连续多帧语义激光分割数据同步融入占据栅格地图。对具有不同语义类别的栅格进行聚类,得到标注物体类别和轮廓的语义栅格地图。此外,针对语义栅格地图发布导航任务,利用路径搜索算法进行路径规划,并对其进行改进。结果在实验室走廊和办公室分别进行了语义栅格建图的实验,并与原始栅格地图进行了比较。在语义栅格地图的基础上进行了路径规划,并采用了语义赋权算法对易移动物体的路径进行对比。结论多种环境下的实验表明本文方法能获得与真实环境一致性较高、标注环境中物体类别和轮廓的语义栅格地图,且实验硬件结构简单、成本低、性能良好,适用于智能化机器人的导航和路径规划。