时序抽象作为分层强化学习的重要研究内容,允许分层强化学习智能体在不同的时间尺度上学习策略,可以有效解决深度强化学习难以处理的稀疏奖励问题。如何端到端地学习到优秀的时序抽象策略一直是分层强化学习研究面临的挑战。Option-Crit...时序抽象作为分层强化学习的重要研究内容,允许分层强化学习智能体在不同的时间尺度上学习策略,可以有效解决深度强化学习难以处理的稀疏奖励问题。如何端到端地学习到优秀的时序抽象策略一直是分层强化学习研究面临的挑战。Option-Critic(OC)框架在Option框架的基础上,通过策略梯度理论,可以有效解决此问题。然而,在策略学习过程中,OC框架会出现Option内部策略动作分布变得十分相似的退化问题。该退化问题影响了OC框架的实验性能,导致Option的可解释性变差。为了解决上述问题,引入互信息知识作为内部奖励,并提出基于互信息优化的Option-Critic算法(Option-Critic Algorithm with Mutual Information Optimization,MIOOC)。MIOOC算法结合了近端策略Option-Critic(Proximal Policy Option-Critic,PPOC)算法,可以保证下层策略的多样性。为了验证算法的有效性,把MIOOC算法和几种常见的强化学习方法在连续实验环境中进行对比实验。实验结果表明,MIOOC算法可以加快模型学习速度,实验性能更优,Option内部策略更有区分度。展开更多
提出并实现了一种新的蚁群优化(ACO)并行化策略SHOP(Sharing one pheromone matrix).主要思想是基于多蚁群在解的构造过程和信息素更新过程中共享同一个信息素矩阵.以ACS和MMAS的SHOP并行实现为例,简要描述了SHOP设计思想和实现过程,...提出并实现了一种新的蚁群优化(ACO)并行化策略SHOP(Sharing one pheromone matrix).主要思想是基于多蚁群在解的构造过程和信息素更新过程中共享同一个信息素矩阵.以ACS和MMAS的SHOP并行实现为例,简要描述了SHOP设计思想和实现过程,尝试了ACS和MMAS并行混合.以对称TSP测试集为对象,将SHOP的实现与相应串行算法在相同计算环境下的实验结果比较,以及与现有的并行实现进行比较,结果表明SHOP并行策略相对于串行ACO及现有的并行策略具有一定的优势.展开更多
文摘时序抽象作为分层强化学习的重要研究内容,允许分层强化学习智能体在不同的时间尺度上学习策略,可以有效解决深度强化学习难以处理的稀疏奖励问题。如何端到端地学习到优秀的时序抽象策略一直是分层强化学习研究面临的挑战。Option-Critic(OC)框架在Option框架的基础上,通过策略梯度理论,可以有效解决此问题。然而,在策略学习过程中,OC框架会出现Option内部策略动作分布变得十分相似的退化问题。该退化问题影响了OC框架的实验性能,导致Option的可解释性变差。为了解决上述问题,引入互信息知识作为内部奖励,并提出基于互信息优化的Option-Critic算法(Option-Critic Algorithm with Mutual Information Optimization,MIOOC)。MIOOC算法结合了近端策略Option-Critic(Proximal Policy Option-Critic,PPOC)算法,可以保证下层策略的多样性。为了验证算法的有效性,把MIOOC算法和几种常见的强化学习方法在连续实验环境中进行对比实验。实验结果表明,MIOOC算法可以加快模型学习速度,实验性能更优,Option内部策略更有区分度。
文摘提出并实现了一种新的蚁群优化(ACO)并行化策略SHOP(Sharing one pheromone matrix).主要思想是基于多蚁群在解的构造过程和信息素更新过程中共享同一个信息素矩阵.以ACS和MMAS的SHOP并行实现为例,简要描述了SHOP设计思想和实现过程,尝试了ACS和MMAS并行混合.以对称TSP测试集为对象,将SHOP的实现与相应串行算法在相同计算环境下的实验结果比较,以及与现有的并行实现进行比较,结果表明SHOP并行策略相对于串行ACO及现有的并行策略具有一定的优势.