基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对...基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对抗样本和自编码器的鲁棒异常检测(Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder,RAD-ASAE)方法。RAD-ASAE由两个参数共享的编码器和一个解码器构成。首先,对正常样本施加微小的扰动以生成对抗样本,利用正常样本和对抗样本同时对模型进行训练,以提高模型的对抗鲁棒性;其次,在样本空间中最小化对抗样本的重构误差以及正常样本与对抗样本的重构样本之间的均方误差,同时在潜在空间中最小化正常样本和对抗样本的潜在特征之间的均方误差,以提高自编码器的重构能力。在MNIST,Fashion-MNIST,CIFAR-10数据集上进行实验,结果表明,与7种相关方法相比,RAD-ASAE展现了更优的异常检测性能。展开更多
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ...随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。展开更多
基于自编码器的特征提取技术广泛应用于图像聚类分析,在较简单的图像集上取得了令人满意的聚类结果,但自编码器的特征表示能力有限,很难捕捉到复杂低质图像的局部特征。本文提出一种基于非对称结构卷积自编码器(Convolutional auto-enco...基于自编码器的特征提取技术广泛应用于图像聚类分析,在较简单的图像集上取得了令人满意的聚类结果,但自编码器的特征表示能力有限,很难捕捉到复杂低质图像的局部特征。本文提出一种基于非对称结构卷积自编码器(Convolutional auto-encoder with an asymmetric structure,ASCAE)的学习视觉特征的深度聚类方法,其中非对称结构的卷积自编码器用于学习特征表示,然后使用K-means算法对特征数据进行聚类分析。为进一步提高特征表示能力,ASCAE方法的网络采用变步长的卷积层和全连接的重构误差正则约束网络的重构误差。在7个公开图像集上的实验结果表明该网络有很好的特征表示能力,并且使得K-means算法能提供很好的聚类结果。在COIL-20和MNIST图像集上,聚类方法ASCAE的聚类精度分别为0.754和0.918,优于同类型的4种深度聚类方法(AEC、IEC、DEC和DEN)。展开更多
高光谱异常变化检测能够从多时相高光谱遥感图像中寻找到数量稀少、与整体背景变化趋势不同、难以发现且令人感兴趣的异常变化。数据集规模较小、存在噪声干扰以及线性预测模型存在局限性等问题,极大地降低了传统高光谱异常变化检测方...高光谱异常变化检测能够从多时相高光谱遥感图像中寻找到数量稀少、与整体背景变化趋势不同、难以发现且令人感兴趣的异常变化。数据集规模较小、存在噪声干扰以及线性预测模型存在局限性等问题,极大地降低了传统高光谱异常变化检测方法的检测性能。目前,自编码器已被成功地应用于高光谱异常变化检测。然而,单个自编码器在处理多时相高光谱图像时,仅关注图像的重构质量,在获取瓶颈特征时往往忽略了图像中复杂的光谱变化信息。为了解决该问题,提出了一种基于双空间共轭自编码器的多时相高光谱异常变化检测(Multi-temporal Hyperspectral Anomaly Change Detection Based on Dual Space Conjugate Autoencoder,DSCAE)方法。所提方法包含两个共轭的自编码器,即它们从不同方向构造各自的潜在特征。在该方法的训练过程中,首先,两幅不同时刻的高光谱图像经过各自的编码器分别获得相应的潜在空间特征表示,再分别经过各自的解码器获得另一时刻的预测图像;其次,在样本空间和潜在空间中施加不同的约束条件,并在两个空间中最小化相应的损失函数;最后,两幅输入图像经过共轭自编码器后获得各自的异常损失图,对所得的两幅异常损失图采用取小运算得到最终的异常变化强度图,以便在减小输入图像间背景光谱差异的同时突出异常变化。在高光谱异常变化检测基准数据集上的实验结果表明,与10种相关方法相比,DSCAE展现了更优的检测性能。展开更多
文摘基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对抗样本和自编码器的鲁棒异常检测(Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder,RAD-ASAE)方法。RAD-ASAE由两个参数共享的编码器和一个解码器构成。首先,对正常样本施加微小的扰动以生成对抗样本,利用正常样本和对抗样本同时对模型进行训练,以提高模型的对抗鲁棒性;其次,在样本空间中最小化对抗样本的重构误差以及正常样本与对抗样本的重构样本之间的均方误差,同时在潜在空间中最小化正常样本和对抗样本的潜在特征之间的均方误差,以提高自编码器的重构能力。在MNIST,Fashion-MNIST,CIFAR-10数据集上进行实验,结果表明,与7种相关方法相比,RAD-ASAE展现了更优的异常检测性能。
文摘随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。
文摘基于自编码器的特征提取技术广泛应用于图像聚类分析,在较简单的图像集上取得了令人满意的聚类结果,但自编码器的特征表示能力有限,很难捕捉到复杂低质图像的局部特征。本文提出一种基于非对称结构卷积自编码器(Convolutional auto-encoder with an asymmetric structure,ASCAE)的学习视觉特征的深度聚类方法,其中非对称结构的卷积自编码器用于学习特征表示,然后使用K-means算法对特征数据进行聚类分析。为进一步提高特征表示能力,ASCAE方法的网络采用变步长的卷积层和全连接的重构误差正则约束网络的重构误差。在7个公开图像集上的实验结果表明该网络有很好的特征表示能力,并且使得K-means算法能提供很好的聚类结果。在COIL-20和MNIST图像集上,聚类方法ASCAE的聚类精度分别为0.754和0.918,优于同类型的4种深度聚类方法(AEC、IEC、DEC和DEN)。
文摘高光谱异常变化检测能够从多时相高光谱遥感图像中寻找到数量稀少、与整体背景变化趋势不同、难以发现且令人感兴趣的异常变化。数据集规模较小、存在噪声干扰以及线性预测模型存在局限性等问题,极大地降低了传统高光谱异常变化检测方法的检测性能。目前,自编码器已被成功地应用于高光谱异常变化检测。然而,单个自编码器在处理多时相高光谱图像时,仅关注图像的重构质量,在获取瓶颈特征时往往忽略了图像中复杂的光谱变化信息。为了解决该问题,提出了一种基于双空间共轭自编码器的多时相高光谱异常变化检测(Multi-temporal Hyperspectral Anomaly Change Detection Based on Dual Space Conjugate Autoencoder,DSCAE)方法。所提方法包含两个共轭的自编码器,即它们从不同方向构造各自的潜在特征。在该方法的训练过程中,首先,两幅不同时刻的高光谱图像经过各自的编码器分别获得相应的潜在空间特征表示,再分别经过各自的解码器获得另一时刻的预测图像;其次,在样本空间和潜在空间中施加不同的约束条件,并在两个空间中最小化相应的损失函数;最后,两幅输入图像经过共轭自编码器后获得各自的异常损失图,对所得的两幅异常损失图采用取小运算得到最终的异常变化强度图,以便在减小输入图像间背景光谱差异的同时突出异常变化。在高光谱异常变化检测基准数据集上的实验结果表明,与10种相关方法相比,DSCAE展现了更优的检测性能。