期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
数学建模——科学培养数学思维的关键 被引量:7
1
作者 花强 董春茹 张峰 《数学建模及其应用》 2018年第2期55-58,84,共5页
数学建模是训练数学思维的重要手段,是科学培养数学思维的关键.从数学建模过程对于科学地训练数学思维的作用出发,对数学建模和数学思维的能动关系进行了理论研究,分别从理论基础和实际应用两个方面说明数学建模教学等相关活动的开展对... 数学建模是训练数学思维的重要手段,是科学培养数学思维的关键.从数学建模过程对于科学地训练数学思维的作用出发,对数学建模和数学思维的能动关系进行了理论研究,分别从理论基础和实际应用两个方面说明数学建模教学等相关活动的开展对于科学地培养数学思维的重要作用. 展开更多
关键词 数学建模 数学思维 科学性 创新能力
下载PDF
基于邻域采样的多任务图推荐算法 被引量:2
2
作者 张俊三 肖森 +3 位作者 高慧 邵明文 张培颖 朱杰 《计算机工程与应用》 CSCD 北大核心 2024年第9期172-180,共9页
近年来,图神经网络(GNN)成为解决协同过滤的主流方法之一。它通过构建用户-物品图,模拟用户与物品的交互关系,并用GNN学习它们的特征表示。尽管现有在模型结构上的研究已取得了较大进展,但如何在图结构上更有效地进行负采样仍未有效解... 近年来,图神经网络(GNN)成为解决协同过滤的主流方法之一。它通过构建用户-物品图,模拟用户与物品的交互关系,并用GNN学习它们的特征表示。尽管现有在模型结构上的研究已取得了较大进展,但如何在图结构上更有效地进行负采样仍未有效解决。为此,提出一种基于邻域采样的多任务图推荐算法。该算法提出了一种基于GNN的邻域采样策略,该策略以每个用户为中心构建子图,将次高阶物品作为用户邻域采样的负样本,可以更有效地挖掘强负样本并提高采样质量。通过GNN对图结点进行信息聚合与特征提取,得到结点的最终嵌入表示。设计一种余弦边际损失来过滤部分冗余负样本,以有效减少采样过程中的噪声数据。同时,该算法引入了多任务策略对模型进行联合优化,以增强模型的泛化能力。在3个公开数据集上进行的大量实验表明,该算法在大多数情况下明显优于其他主流算法。 展开更多
关键词 图神经网络 协同过滤 负采样 邻域采样 余弦边际损失 多任务策略
下载PDF
基于Depth-wise卷积和视觉Transformer的图像分类模型 被引量:3
3
作者 张峰 黄仕鑫 +1 位作者 花强 董春茹 《计算机科学》 CSCD 北大核心 2024年第2期196-204,共9页
图像分类作为一种常见的视觉识别任务,有着广阔的应用场景。在处理图像分类问题时,传统的方法通常使用卷积神经网络,然而,卷积网络的感受野有限,难以建模图像的全局关系表示,导致分类精度低,难以处理复杂多样的图像数据。为了对全局关... 图像分类作为一种常见的视觉识别任务,有着广阔的应用场景。在处理图像分类问题时,传统的方法通常使用卷积神经网络,然而,卷积网络的感受野有限,难以建模图像的全局关系表示,导致分类精度低,难以处理复杂多样的图像数据。为了对全局关系进行建模,一些研究者将Transformer应用于图像分类任务,但为了满足Transformer的序列化和并行化要求,需要将图像分割成大小相等、互不重叠的图像块,破坏了相邻图像数据块之间的局部信息。此外,由于Transformer具有较少的先验知识,模型往往需要在大规模数据集上进行预训练,因此计算复杂度较高。为了同时建模图像相邻块之间的局部信息并充分利用图像的全局信息,提出了一种基于Depth-wise卷积的视觉Transformer(Efficient Pyramid Vision Transformer,EPVT)模型。EPVT模型可以实现以较低的计算成本提取相邻图像块之间的局部和全局信息。EPVT模型主要包含3个关键组件:局部感知模块(Local Perceptron Module,LPM)、空间信息融合模块(Spatial Information Fusion,SIF)和“+卷积前馈神经网络(Convolution Feed-forward Network,CFFN)。LPM模块用于捕获图像的局部相关性;SIF模块用于融合相邻图像块之间的局部信息,并利用不同图像块之间的远距离依赖关系,提升模型的特征表达能力,使模型学习到输出特征在不同维度下的语义信息;CFFN模块用于编码位置信息和重塑张量。在图像分类数据集ImageNet-1K上,所提模型优于现有的同等规模的视觉Transformer分类模型,取得了82.6%的分类准确度,证明了该模型在大规模数据集上具有竞争力。 展开更多
关键词 深度学习 图像分类 Depth-wise卷积 视觉Transformer 注意力机制
下载PDF
基于对抗样本和自编码器的鲁棒异常检测 被引量:1
4
作者 李沙沙 邢红杰 《计算机科学》 CSCD 北大核心 2024年第5期363-373,共11页
基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对... 基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对抗样本和自编码器的鲁棒异常检测(Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder,RAD-ASAE)方法。RAD-ASAE由两个参数共享的编码器和一个解码器构成。首先,对正常样本施加微小的扰动以生成对抗样本,利用正常样本和对抗样本同时对模型进行训练,以提高模型的对抗鲁棒性;其次,在样本空间中最小化对抗样本的重构误差以及正常样本与对抗样本的重构样本之间的均方误差,同时在潜在空间中最小化正常样本和对抗样本的潜在特征之间的均方误差,以提高自编码器的重构能力。在MNIST,Fashion-MNIST,CIFAR-10数据集上进行实验,结果表明,与7种相关方法相比,RAD-ASAE展现了更优的异常检测性能。 展开更多
关键词 自编码器 对抗样本 异常检测 对抗攻击 鲁棒性
下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
5
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 变分自编码器 异常检测 超球崩溃
下载PDF
动态信息系统中基于序贯三支决策的属性约简方法 被引量:3
6
作者 李艳 张丽 陈俊芬 《计算机科学》 CSCD 北大核心 2019年第B06期120-123,141,共5页
针对多准则分类问题,即条件属性为有序的符号值或连续值,而决策属性为类别标签的问题,采用优势-等价关系来表示其信息系统。但很多现实中的信息系统又是动态变化的,属性约简作为其重要的知识需要及时更新。为处理带有偏好关系的动态信... 针对多准则分类问题,即条件属性为有序的符号值或连续值,而决策属性为类别标签的问题,采用优势-等价关系来表示其信息系统。但很多现实中的信息系统又是动态变化的,属性约简作为其重要的知识需要及时更新。为处理带有偏好关系的动态信息系统,建立多标准决策问题中的高效知识更新方法,提出了优势-等价关系下基于序贯三支决策的约简更新方法。将多粒度结合起来形成动态粒序,当对象集和属性集变化时通过重用原有信息快速更新属性约简,从而降低知识更新的代价。最后选取了多组UCI数据集进行实验,结果表明所提方法能够在保证约简质量的基础上明显降低计算耗费。 展开更多
关键词 动态信息系统 序贯三支决策 属性约简 优势关系 知识更新
下载PDF
基于无监督学习视觉特征的深度聚类方法 被引量:7
7
作者 陈俊芬 赵佳成 +1 位作者 翟俊海 李艳 《南京航空航天大学学报》 CAS CSCD 北大核心 2021年第5期718-725,共8页
基于自编码器的特征提取技术广泛应用于图像聚类分析,在较简单的图像集上取得了令人满意的聚类结果,但自编码器的特征表示能力有限,很难捕捉到复杂低质图像的局部特征。本文提出一种基于非对称结构卷积自编码器(Convolutional auto-enco... 基于自编码器的特征提取技术广泛应用于图像聚类分析,在较简单的图像集上取得了令人满意的聚类结果,但自编码器的特征表示能力有限,很难捕捉到复杂低质图像的局部特征。本文提出一种基于非对称结构卷积自编码器(Convolutional auto-encoder with an asymmetric structure,ASCAE)的学习视觉特征的深度聚类方法,其中非对称结构的卷积自编码器用于学习特征表示,然后使用K-means算法对特征数据进行聚类分析。为进一步提高特征表示能力,ASCAE方法的网络采用变步长的卷积层和全连接的重构误差正则约束网络的重构误差。在7个公开图像集上的实验结果表明该网络有很好的特征表示能力,并且使得K-means算法能提供很好的聚类结果。在COIL-20和MNIST图像集上,聚类方法ASCAE的聚类精度分别为0.754和0.918,优于同类型的4种深度聚类方法(AEC、IEC、DEC和DEN)。 展开更多
关键词 图像聚类 卷积自编码器 特征表示 K-MEANS算法 聚类精度
下载PDF
基于注意力的多尺度蒸馏异常检测
8
作者 乔虹 邢红杰 《计算机科学》 CSCD 北大核心 2024年第S01期634-644,共11页
基于知识蒸馏的异常检测方法中,教师网络远大于学生网络,使得所得特征表示在同一位置对应图像的感受野不同。为解决此问题,可使学生网络与教师网络结构相同。然而,学生与教师网络完全相同,使得在测试阶段,对于异常样本,教师网络与学生... 基于知识蒸馏的异常检测方法中,教师网络远大于学生网络,使得所得特征表示在同一位置对应图像的感受野不同。为解决此问题,可使学生网络与教师网络结构相同。然而,学生与教师网络完全相同,使得在测试阶段,对于异常样本,教师网络与学生网络特征表示差异过小而影响异常检测的性能。为解决该问题,提出了基于高效通道注意力模块的多尺度知识蒸馏异常检测方法(ECA Based Multi-Scale Knowledge Distillation Anomaly Detection,ECA-MSKDAD),并结合数据增强操作提出了相对距离损失函数。使用经过预训练的网络作为教师网络,同时使用与教师网络结构相同的网络作为学生网络。在训练阶段,对训练样本采取数据增强操作以扩充训练集的规模,并在学生网络中引入高效通道注意力(Efficient Channel Attention,ECA)模块,以增加教师网络和学生网络之间的差异,增大异常数据的重构误差,进而提高模型的检测性能。此外,利用相对距离损失函数,将数据间关系从教师网络传递到学生网络,对学生网络的网络参数进行优化。在MVTec AD进行实验,与9种相关方法比较,所提方法在异常检测与异常定位上均取得更优的性能。 展开更多
关键词 深度学习 异常检测 异常定位 知识蒸馏 注意力机制
下载PDF
用模糊积分集成重复训练极限学习机的数据分类方法 被引量:4
9
作者 翟俊海 张素芳 周昭一 《小型微型计算机系统》 CSCD 北大核心 2018年第6期1223-1227,共5页
用极限学习机重复训练单隐含层前馈神经网络可得到不同的网络模型.受极限学习机这一特点的启发,提出了一种用模糊积分集成重复训练极限学习机的数据分类方法.该方法分为3步:第1步,用极限学习机重复训练单隐含层前馈神经网络.在训练时,... 用极限学习机重复训练单隐含层前馈神经网络可得到不同的网络模型.受极限学习机这一特点的启发,提出了一种用模糊积分集成重复训练极限学习机的数据分类方法.该方法分为3步:第1步,用极限学习机重复训练单隐含层前馈神经网络.在训练时,不仅输入层权值和隐含层结点的偏置随机生成,隐含层结点的个数也随机生成.第2步,用软最大化函数将训练的单隐含层前馈神经网络的输出变换为后验概率分布.第3步,用模糊积分集成重复训练的单隐含层前馈神经网络,并用于数据分类.提出的方法具有2个优点:1)网络模型具有良好的多样性,理由是重复训练得到的单隐含层前馈神经网络具有不同的结构和不同的参数.2)具有良好的泛化能力,理由是模糊积分能很好地刻画基本分类器之间的交互作用.此外,提出的方法提供了一种网络结构选择的替代方案,利用提出的方法解决实际问题时,可以不用考虑网络结构选择问题.与其他2个算法在10个数据集上进行了实验比较,实验结果及对实验结果的统计分析显示提出的算法在分类精度上优于这2种算法. 展开更多
关键词 数据分类 极限学习机 重复训练 模糊积分 集成
下载PDF
在线序列主动学习方法 被引量:1
10
作者 翟俊海 臧立光 张素芳 《计算机科学》 CSCD 北大核心 2017年第1期37-41,70,共6页
现实世界中存在着大量无类标的数据,如各种医疗图像数据、网页数据等。在大数据时代,这种情况更加突出。标注这些无类标的数据需要付出巨大的代价。主动学习是解决这一问题的有效手段,也是近几年机器学习和数据挖掘领域中的一个研究热... 现实世界中存在着大量无类标的数据,如各种医疗图像数据、网页数据等。在大数据时代,这种情况更加突出。标注这些无类标的数据需要付出巨大的代价。主动学习是解决这一问题的有效手段,也是近几年机器学习和数据挖掘领域中的一个研究热点。提出了一种基于在线序列极限学习机的主动学习算法,该算法利用在线序列极限学习机增量学习的特点,可显著提高学习系统的效率。另外,该算法用样例熵作为启发式度量无类标样例的重要性,用K-近邻分类器作为Oracle标注选出的无类标样例的类别。实验结果显示,提出的算法具有学习速度快、标注准确的特点。 展开更多
关键词 主动学习 极限学习机 在线序列学习 样例熵 K-近邻
下载PDF
集成重复训练极限学习机的数据分类 被引量:2
11
作者 翟俊海 周昭一 臧立光 《数据采集与处理》 CSCD 北大核心 2018年第6期962-970,共9页
极限学习机是一种随机化算法,它随机生成单隐含层神经网络输入层连接权和隐含层偏置,用分析的方法确定输出层连接权。给定网络结构,用极限学习机重复训练网络,会得到不同的学习模型。本文提出了一种集成模型对数据进行分类的方法。首先... 极限学习机是一种随机化算法,它随机生成单隐含层神经网络输入层连接权和隐含层偏置,用分析的方法确定输出层连接权。给定网络结构,用极限学习机重复训练网络,会得到不同的学习模型。本文提出了一种集成模型对数据进行分类的方法。首先用极限学习机算法重复训练若干个单隐含层前馈神经网络,然后用多数投票法集成训练好的神经网络,最后用集成模型对数据进行分类,并在10个数据集上和极限学习机及集成极限学习机进行了实验比较。实验结果表明,本文提出的方法优于极限学习机和集成极限学习机。 展开更多
关键词 极限学习机 随机化方法 重复训练 泛化能力
下载PDF
基于极速学习的Choquet模糊积分分类器
12
作者 陈爱霞 张春琴 《河北大学学报(自然科学版)》 CAS 北大核心 2019年第4期337-341,共5页
在交互环境下,模糊积分分类器具有良好的分类性能.如何确定在属性集幂集上定义的模糊测度是模糊积分分类器中的一个关键问题.当属性的个数增加时,计算复杂度呈指数级增长.为了解决这一问题,借鉴极速学习机算法中权重向量随机确定的思想... 在交互环境下,模糊积分分类器具有良好的分类性能.如何确定在属性集幂集上定义的模糊测度是模糊积分分类器中的一个关键问题.当属性的个数增加时,计算复杂度呈指数级增长.为了解决这一问题,借鉴极速学习机算法中权重向量随机确定的思想,提出了ELM-Choquet模糊积分分类器.实验结果表明,和Choquet模糊积分分类器相比,该算法具有较优的分类性能. 展开更多
关键词 模糊测度 模糊积分 CHOQUET模糊积分 极速学习机 遗传算法
下载PDF
一种基于Q-学习算法的增量分类模型 被引量:4
13
作者 刘凌云 钱辉 +2 位作者 邢红杰 董春茹 张峰 《计算机科学》 CSCD 北大核心 2020年第8期171-177,共7页
大数据时代的数据信息呈现持续性、爆炸性的增长,为机器学习算法带来了大量监督样本。然而,这对信息通常不是一次性获得的,且获得的数据标记是不准确的,这对传统的分类模型提出了挑战,而增量学习是一种重要的解决方法。但在增量学习中,... 大数据时代的数据信息呈现持续性、爆炸性的增长,为机器学习算法带来了大量监督样本。然而,这对信息通常不是一次性获得的,且获得的数据标记是不准确的,这对传统的分类模型提出了挑战,而增量学习是一种重要的解决方法。但在增量学习中,样本的标记顺序将严重影响分类器的性能,特别是在分类器分类能力较弱的情况下,传统的增量学习方法容易过早地将噪声数据添加到训练集上,从而影响分类器的精度。为解决这个问题,文中提出一种基于Q-学习算法的增量分类模型。该模型利用强化学习中经典的Q-学习算法来合理选择样本增量序列,削弱噪声数据的负面影响,并实现在学习过程中自主标记样本。同时,为了解决当新增未标记样本集规模较大时,Q-学习中的状态空间与动作空间增大带来的计算复杂度和存储空间呈指数增长的问题,文中进一步给出了批量增量分类模型,有效降低了模型的计算复杂度并节约了存储空间。基于Q-学习算法的增量分类模型融合了增量学习及强化学习的思想,具有分类精度高、实时性强等优点。最后,在3个UCI数据集上进行实验来验证所提模型的有效性,结果表明该模型通过选择新增训练集合的确有助于提升分类器的精度,且由不同增量序列训练得到的分类器精度也有较大差异。基于Q-学习算法的增量分类模型可以利用已有的少量监督信息进行初始训练,通过自主标记样本构造增量训练集,并通过自监督的方式提高分类器的精度。因此,基于Q-学习算法的增量分类模型可被用于解决监督信息缺乏的问题,具有一定的应用价值。 展开更多
关键词 增量学习 Q-学习 在线学习 分类 强化学习
下载PDF
代价敏感惩罚AdaBoost算法的非平衡数据分类 被引量:7
14
作者 鲁淑霞 张振莲 翟俊海 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第2期339-346,共8页
针对非平衡数据分类问题,提出了一种基于代价敏感的惩罚AdaBoost算法。在惩罚Adaboost算法中,引入一种新的自适应代价敏感函数,赋予少数类样本及分错的少数类样本更高的代价值,并通过引入惩罚机制增大了样本的平均间隔。选择加权支持向... 针对非平衡数据分类问题,提出了一种基于代价敏感的惩罚AdaBoost算法。在惩罚Adaboost算法中,引入一种新的自适应代价敏感函数,赋予少数类样本及分错的少数类样本更高的代价值,并通过引入惩罚机制增大了样本的平均间隔。选择加权支持向量机(Support vector machine,SVM)优化模型作为基分类器,采用带有方差减小的随机梯度下降方法(Stochastic variance reduced gradient,SVRG)对优化模型进行求解。对比实验表明,本文提出的算法不但在几何均值(G-mean)和ROC曲线下的面积(Area under ROC curve,AUC)上明显优于其他算法,而且获得了较大的平均间隔,显示了本文算法在处理非平衡数据分类问题上的有效性。 展开更多
关键词 非平衡数据 惩罚AdaBoost 自适应代价敏感函数 平均间隔 随机梯度下降
下载PDF
调和整映射的级和型
15
作者 乔金静 田悦 郑莉芳 《河北大学学报(自然科学版)》 CAS 北大核心 2023年第2期127-132,共6页
为讨论调和整映射的增长估计,研究其级和型,而级和型可以由其解析部分以及反解析部分的系数刻画.对于严格递增的正整数数列{n_(k)}^(∞)_(k=1),利用调和整映射的解析部分和反解析部分的n k阶导数在某一点的值,定义了2个量,且证明了这2... 为讨论调和整映射的增长估计,研究其级和型,而级和型可以由其解析部分以及反解析部分的系数刻画.对于严格递增的正整数数列{n_(k)}^(∞)_(k=1),利用调和整映射的解析部分和反解析部分的n k阶导数在某一点的值,定义了2个量,且证明了这2个量分别与调和整映射的级和型几乎处处相等. 展开更多
关键词 整函数 调和整映射
下载PDF
基于知识蒸馏和高效通道注意力的异常检测 被引量:1
16
作者 周士金 邢红杰 《计算机科学》 CSCD 北大核心 2023年第S02期577-586,共10页
基于知识蒸馏的异常检测方法通常将经过预训练的网络作为教师网络,并将与该教师网络的模型结构及规模大小相同的网络用作学生网络,对于待测数据,利用教师网络与学生网络之间的差异判定其为正常数据或异常数据。然而,教师网络与学生网络... 基于知识蒸馏的异常检测方法通常将经过预训练的网络作为教师网络,并将与该教师网络的模型结构及规模大小相同的网络用作学生网络,对于待测数据,利用教师网络与学生网络之间的差异判定其为正常数据或异常数据。然而,教师网络与学生网络的结构和规模均相同,一方面,会使得基于知识蒸馏的异常检测方法在异常数据上产生的差异过小;另一方面,教师网络的预训练数据集在规模上远大于学生网络的训练集,这会使得学生网络产生大量的冗余信息。为了解决上述问题,将高效通道注意力(Efficient Channel Attention,ECA)模块引入到基于知识蒸馏的异常检测方法中,利用ECA的跨通道交互策略,设计比教师网络结构更简单且规模更小的学生网络,既可以有效地获取正常数据的特征,去除冗余信息,又能增大教师网络与学生网络之间的差异,提高异常检测的性能。在6个图像数据集上的实验结果表明,与其他5种相关方法相比,所提方法取得了更优的检测性能。 展开更多
关键词 异常检测 知识蒸馏 注意力机制 教师网络 学生网络
下载PDF
基于双空间共轭自编码器的多时相高光谱异常变化检测
17
作者 李沙沙 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2023年第12期175-184,共10页
高光谱异常变化检测能够从多时相高光谱遥感图像中寻找到数量稀少、与整体背景变化趋势不同、难以发现且令人感兴趣的异常变化。数据集规模较小、存在噪声干扰以及线性预测模型存在局限性等问题,极大地降低了传统高光谱异常变化检测方... 高光谱异常变化检测能够从多时相高光谱遥感图像中寻找到数量稀少、与整体背景变化趋势不同、难以发现且令人感兴趣的异常变化。数据集规模较小、存在噪声干扰以及线性预测模型存在局限性等问题,极大地降低了传统高光谱异常变化检测方法的检测性能。目前,自编码器已被成功地应用于高光谱异常变化检测。然而,单个自编码器在处理多时相高光谱图像时,仅关注图像的重构质量,在获取瓶颈特征时往往忽略了图像中复杂的光谱变化信息。为了解决该问题,提出了一种基于双空间共轭自编码器的多时相高光谱异常变化检测(Multi-temporal Hyperspectral Anomaly Change Detection Based on Dual Space Conjugate Autoencoder,DSCAE)方法。所提方法包含两个共轭的自编码器,即它们从不同方向构造各自的潜在特征。在该方法的训练过程中,首先,两幅不同时刻的高光谱图像经过各自的编码器分别获得相应的潜在空间特征表示,再分别经过各自的解码器获得另一时刻的预测图像;其次,在样本空间和潜在空间中施加不同的约束条件,并在两个空间中最小化相应的损失函数;最后,两幅输入图像经过共轭自编码器后获得各自的异常损失图,对所得的两幅异常损失图采用取小运算得到最终的异常变化强度图,以便在减小输入图像间背景光谱差异的同时突出异常变化。在高光谱异常变化检测基准数据集上的实验结果表明,与10种相关方法相比,DSCAE展现了更优的检测性能。 展开更多
关键词 高光谱图像异常变化检测 自编码器 深度学习 异常检测 多时相高光谱图像
下载PDF
卷积神经网络及其研究进展 被引量:18
18
作者 翟俊海 张素芳 郝璞 《河北大学学报(自然科学版)》 CAS 北大核心 2017年第6期640-651,共12页
深度学习是目前机器学习领域最热门的研究方向,轰动全球的AlphaGo就是用深度学习算法训练的.卷积神经网络是用深度学习算法训练的一种模型,它在计算机视觉领域应用广泛,而且获得了巨大的成功.本文的主要目的有2个:一是帮助读者深入理解... 深度学习是目前机器学习领域最热门的研究方向,轰动全球的AlphaGo就是用深度学习算法训练的.卷积神经网络是用深度学习算法训练的一种模型,它在计算机视觉领域应用广泛,而且获得了巨大的成功.本文的主要目的有2个:一是帮助读者深入理解卷积神经网络,包括网络结构、核心概念、操作和训练;二是对卷积神经网络的近期研究进展进行综述,重点综述了激活函数、池化、训练及应用4个方面的研究进展.另外,还对其面临的挑战和热点研究方向进行了讨论.本文将为从事相关研究的人员提供很好的帮助. 展开更多
关键词 机器学习 深度学习 卷积神经网络 计算机视觉 训练算法
下载PDF
区间值属性的单调决策树算法 被引量:8
19
作者 陈建凯 王鑫 +1 位作者 何强 王熙照 《模式识别与人工智能》 EI CSCD 北大核心 2016年第1期47-53,共7页
目前存在的一些区间值属性决策树算法都是在无序情况下设计的,未考虑条件属性和决策属性之间的序关系.针对这些算法处理有序分类问题的不足,提出区间值属性的单调决策树算法,用于处理区间值属性的单调分类问题.该算法利用可能度确定区... 目前存在的一些区间值属性决策树算法都是在无序情况下设计的,未考虑条件属性和决策属性之间的序关系.针对这些算法处理有序分类问题的不足,提出区间值属性的单调决策树算法,用于处理区间值属性的单调分类问题.该算法利用可能度确定区间值属性的序关系,使用排序互信息度量区间值属性的单调一致程度,通过排序互信息的最大化选取扩展属性.此外,将非平衡割点应用到区间值属性决策树构建过程中,减少排序互信息的计算次数,提高计算效率.实验表明文中算法提高了效率和测试精度. 展开更多
关键词 区间值属性 单调分类 可能度 单调决策树
下载PDF
复杂高维数据的密度峰值快速搜索聚类算法 被引量:13
20
作者 陈俊芬 张明 赵佳成 《计算机科学》 CSCD 北大核心 2020年第3期79-86,共8页
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了... 机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。 展开更多
关键词 聚类 密度峰值 DPC算法 特征表示 流形距离
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部