期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
基于改进SKNet-SVM的网络安全态势评估 被引量:3
1
作者 赵冬梅 孙明伟 +1 位作者 宿梦月 吴亚星 《应用科学学报》 CAS CSCD 北大核心 2024年第2期334-349,共16页
为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,... 为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,增强特征之间关联性。然后,将提取的特征输入到支持向量机中进行分类,并使用网格优化算法对支持向量机中的参数进行全局寻优。最后,根据网络攻击影响指标计算网络安全态势值。实验表明,基于改进选择性卷积核卷积神经网络和支持向量机的态势评估模型与传统的卷积神经网络搭建的态势评估模型相比,准确率更高,并且具有更强的稳定性和鲁棒性。 展开更多
关键词 网络安全态势评估 网络安全态势感知 改进选择性卷积核卷积神经网络 支持向量机 网格优化算法
下载PDF
计算机类专业多课程相结合的综合实践教学改革——以软件工程、Web程序设计和数据库技术为例 被引量:4
2
作者 尹志宇 白旭 姜兴华 《科技风》 2020年第22期26-27,共2页
本文提出了以软件工程、Web程序设计和数据库技术课程为例的多课程相结合的综合实践教学模式。每门课程在各自一学期的基础教学和实践后,教学团队和企业专家组织学生进行为期两周的综合实践教学,包括项目案例教学和学生项目实战,充分培... 本文提出了以软件工程、Web程序设计和数据库技术课程为例的多课程相结合的综合实践教学模式。每门课程在各自一学期的基础教学和实践后,教学团队和企业专家组织学生进行为期两周的综合实践教学,包括项目案例教学和学生项目实战,充分培养了学生的综合实践能力、团队协作能力、沟通能力、自主学习能力等,满足了用人单位对计算机专业高素质人才的需求。 展开更多
关键词 计算机类专业 多课程结合 综合实践 校企合作
下载PDF
基于脉冲神经网络的类脑计算 被引量:6
3
作者 王秀青 曾慧 +2 位作者 韩东梅 刘颖 吕锋 《北京工业大学学报》 CAS CSCD 北大核心 2019年第12期1277-1286,共10页
针对当前重要国际科技前沿--类脑计算进行研究,讨论了类脑计算的研究内容、特点和研究现状.类脑计算不是简单的人脑神经元的模拟和神经元模型的应用,而是对人脑的信息处理规律、复杂的工作模式及思维、学习、推理、决策本质性机理的深... 针对当前重要国际科技前沿--类脑计算进行研究,讨论了类脑计算的研究内容、特点和研究现状.类脑计算不是简单的人脑神经元的模拟和神经元模型的应用,而是对人脑的信息处理规律、复杂的工作模式及思维、学习、推理、决策本质性机理的深层次模拟.脉冲神经网络比传统神经网络具有更好的生物似真性,并能同时融入时、空信息,更适用于受人类推理、判断、决策等思维过程启发的类脑计算.因此,介绍了脉冲神经网络的特点、脉冲神经元模型、脉冲编码,以及脉冲神经网络在模式识别等领域中的应用,并对基于脉冲神经网络的类脑计算方法和神经形态芯片的研究现状及未来的发展进行了讨论.基于脉冲神经网络的类脑计算会对未来的生活、经济发展产生深远影响. 展开更多
关键词 脉冲神经网络 类脑计算 神经形态芯片 神经元模型 脉冲编码 时空信息
下载PDF
基于时间因子和复合CNN结构的网络安全态势评估 被引量:21
4
作者 赵冬梅 宋会倩 张红斌 《计算机科学》 CSCD 北大核心 2021年第12期349-356,共8页
为了解决传统的网络安全态势感知研究方法在网络信息复杂情况下准确率不高等缺陷,文中结合深度学习,提出了一种基于时间因子和复合CNN结构的网络安全态势评估模型,将卷积分解技术和深度可分离技术相结合,形成4层串联复合最优单元结构;... 为了解决传统的网络安全态势感知研究方法在网络信息复杂情况下准确率不高等缺陷,文中结合深度学习,提出了一种基于时间因子和复合CNN结构的网络安全态势评估模型,将卷积分解技术和深度可分离技术相结合,形成4层串联复合最优单元结构;将一维网络数据转换为二维矩阵,以灰度值的形式载入神经网络模型,从而有效发挥卷积神经网络的优势。为充分利用数据间的时序关系,引入时间因子形成融合数据,使网络同时学习具备时序关系的原始数据和融合数据,增强模型的特征提取能力,同时利用时间因子和点卷积建立时序数据的空间映射,提高模型结构的完整性。实验结果证明,所提模型在两个数据集上的准确率分别达到了92.89%和92.60%,相比随机森林和LSTM算法提升了2%~6%。 展开更多
关键词 态势感知 卷积网络 时间因子 深度可分离卷积 卷积分解
下载PDF
基于IPSO-BiLSTM的网络安全态势预测 被引量:14
5
作者 赵冬梅 吴亚星 张红斌 《计算机科学》 CSCD 北大核心 2022年第7期357-362,共6页
针对复杂的网络安全态势预测问题,为了提高预测的收敛速度和预测精度,提出了一种基于改进粒子群优化双向长短期记忆(IPSO-BiLSTM)网络的网络安全态势预测模型。首先,针对所用数据集没有真实态势值的问题,采用了一种基于攻击影响的态势... 针对复杂的网络安全态势预测问题,为了提高预测的收敛速度和预测精度,提出了一种基于改进粒子群优化双向长短期记忆(IPSO-BiLSTM)网络的网络安全态势预测模型。首先,针对所用数据集没有真实态势值的问题,采用了一种基于攻击影响的态势值计算方法,用于态势预测。其次,针对粒子群(PSO)算法易陷入局部最优值、搜索能力不均衡等问题,对惯性权重和加速因子进行改进,改进后的粒子群(IPSO)算法的全局和局部搜索能力平衡,收敛速度更快。最后,使用IPSO优化双向长短期记忆(BiLSTM)网络参数,提升预测能力。实验结果表明,IPSO-BiLSTM的拟合程度可达0.9946,其拟合效果和收敛速度均优于其他模型。 展开更多
关键词 网络安全 态势预测 神经网络 双向长短期记忆网络 改进粒子群优化
下载PDF
基于相似网络和联合注意力的图嵌入模型
6
作者 王静红 李昌鑫 +1 位作者 杨家腾 于富强 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第6期36-44,共9页
图注意力网络(graph attention network, GAT)将注意力机制与图神经网络融合,但模型只关注节点的一阶邻域节点,缺乏对高阶相似节点的考虑,同时在计算注意力分数时缺乏对节点结构特征的关注.为此提出一种基于相似网络和联合注意力的图嵌... 图注意力网络(graph attention network, GAT)将注意力机制与图神经网络融合,但模型只关注节点的一阶邻域节点,缺乏对高阶相似节点的考虑,同时在计算注意力分数时缺乏对节点结构特征的关注.为此提出一种基于相似网络和联合注意力的图嵌入模型.首先计算网络中的节点相似性,并将高相似度且未连接的节点对构建新边以形成相似网络.其次,引入结构相关性和内容相关性的概念,分别用于表征节点之间的结构关系和内容特征.通过融合两种相关性得分计算得到联合注意力分数.最后使用联合注意力分数对节点特征加权聚合,得到最终的节点嵌入表示.将本文所提算法在Cora、Citeseer和Pubmed 3个数据集上进行节点分类任务,准确率分别达到85.70%、74.30%、84.10%,与原始图注意力网络模型相比分别提高了2.70%、3.94%和2.60%.可见,所提出的算法可以得到更好的节点嵌入表示. 展开更多
关键词 图嵌入 图注意力网络 节点相似性 相似网络 节点分类
下载PDF
“3E-4C”双轨并行式信息安全专业实践类课程思政探索
7
作者 董新玉 许艳 +2 位作者 宋娟 王方伟 王长广 《计算机教育》 2024年第12期84-88,共5页
针对信息安全专业目前存在的实践类课程教学中思政教育融合不足的问题,提出面向信息安全专业的“3E-4C”双轨并行式思政融合的实践教学模式,以教育、启示、赋能3个环节和认知、品德、连接、能力4个维度的双轨并行为核心,具体阐述如何深... 针对信息安全专业目前存在的实践类课程教学中思政教育融合不足的问题,提出面向信息安全专业的“3E-4C”双轨并行式思政融合的实践教学模式,以教育、启示、赋能3个环节和认知、品德、连接、能力4个维度的双轨并行为核心,具体阐述如何深化3个环节的层次递进来搭建功能网络,促进学生个人能力的快速发展,如何保障4个维度的有效分级与融合,推动学生综合素质与道德品质的全面提升,最后说明实施成效。 展开更多
关键词 3E-4C 双轨并行 信息安全 实践教学 课程思政
下载PDF
小时间尺度网络数据传输故障识别数学建模
8
作者 肖金桐 田亮 王艳君 《计算机仿真》 2024年第6期507-511,共5页
在网络传输过程中,数据容量较大,受外界因素影响极易导致传输中断,从而出现信息缺失与传输误码。为解决中断故障造成的数据传输误差和缺失问题,提高网络利用率,保证网络的正常通信。因此,提出一种小时间尺度网络数据传输故障识别数学建... 在网络传输过程中,数据容量较大,受外界因素影响极易导致传输中断,从而出现信息缺失与传输误码。为解决中断故障造成的数据传输误差和缺失问题,提高网络利用率,保证网络的正常通信。因此,提出一种小时间尺度网络数据传输故障识别数学建模。建立传输的容错控制条件,分析小时间尺度网络的混沌状态和流量序列,描述网络中多层前向特征,调整各个尺度下权重和阈值。设定容错策略,对小时间尺度网络多项训练,得到网络的中断故障诊断。针对性预测缺失数据,通过函数计算预测误差及序列权重等参数,获得故障隶属度层和规则集合层间调节权值,完成中断故障容错识别。实验证明,所提方法提高了网络传输召回率,增加网络资源利用率,减少网络在中断故障下的传输误码率。 展开更多
关键词 小时间尺度网络 网络流量 混沌理论 中断故障 容错识别
下载PDF
Logistic混沌映射与差分进化改进人工蜂群优化水下定位
9
作者 陈嘉兴 刘扬 +1 位作者 刘晓茜 刘志华 《工程科学与技术》 北大核心 2025年第1期57-67,共11页
水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为... 水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为对节点目标函数的优化问题,有效地提高了水下节点的定位精度。尽管如此,ABC算法在迭代过程中仍存在收敛速度慢、易陷入局部最优的问题。针对这些问题,提出了一种通过Logistic混沌映射与差分进化改进的人工蜂群优化水下定位算法(improved artificial bee colony optimization underwater localization algorithm by Logistic chaos mapping and differential evolution,LDIABC)。首先,在算法种群初始化阶段,引入了Logistic混沌映射,利用该映射函数产生的混沌序列代替随机数生成器,从而使种群在初始化分布时蜜源位置更均匀,并从理论上证明了Logistic混沌序列的互异性,从而避免由于种群分布过于密集导致算法在迭代过程中陷入局部最优;其次,提出了适应度方差这一标准来验证在算法迭代过程中未陷入局部最优,进一步证明其有效性;然后,在引领蜂搜索阶段,基于差分进化的变异策略,提出了权重因子改进引领蜂邻域搜索方式,提高了引领蜂的全局搜索效率,加快了算法的收敛速度。仿真实验表明,LDIABC算法能够有效避免传统ABC算法收敛速度慢和易陷入局部最优的问题。相较于Tent-IABC算法、ELOABC算法、CODEGWO算法以及SAPSO算法,LDIABC算法在收敛速度和节点定位成功率上均有显著提升,并且优化定位精度分别提升了6.36%、13.33%、14.16%和16.88%。这些结果证明LDIABC算法能够有效提升水下节点定位精度,具有良好的优化效果。 展开更多
关键词 人工蜂群优化 水下定位 LOGISTIC混沌映射 适应度方差 权重因子
下载PDF
科斯塔斯环路的软件设计实现
10
作者 冯冀宁 董恩豪 《科技创新与生产力》 2025年第1期128-130,共3页
为了提高载波跟踪环路的便捷性和可携带性,采用C#语言的Winform开发框架来仿真接收机内部的科斯塔斯环路,用生成信号来跟踪原始信号,且随着时间的延长,原始信号和生成信号的曲线逐渐趋于融合。本文给出了环路的数学模型和公式,以及相关... 为了提高载波跟踪环路的便捷性和可携带性,采用C#语言的Winform开发框架来仿真接收机内部的科斯塔斯环路,用生成信号来跟踪原始信号,且随着时间的延长,原始信号和生成信号的曲线逐渐趋于融合。本文给出了环路的数学模型和公式,以及相关环路的工作原理,并分析了跟踪过程中出现的多普勒频移现象,以易于观察的方式显示出来。实验结果验证此方案的可行性,并可以生成可执行文件。 展开更多
关键词 C#语言 Winform开发框架 接收机 信号 科斯塔斯锁相环
下载PDF
基于影响力的跨社交网络谣言扩散模型与抑制方法 被引量:3
11
作者 郭宏刚 杨芳 《计算机应用与软件》 北大核心 2022年第7期73-79,153,共8页
传统在线社交网络谣言分析模型均考虑单一的社交网络,而当前谣言通常跨多个社交网络进行传播,传播速度极快,影响极大。针对这种情况,提出一种基于社交影响力的跨多个社交网络谣言传播模型,基于该模型给出贪婪谣言抑制方法。通过用户与... 传统在线社交网络谣言分析模型均考虑单一的社交网络,而当前谣言通常跨多个社交网络进行传播,传播速度极快,影响极大。针对这种情况,提出一种基于社交影响力的跨多个社交网络谣言传播模型,基于该模型给出贪婪谣言抑制方法。通过用户与其邻居的外部聚类系数决定社交网络的影响力节点,保留高影响力节点的谣言扩散连接,从而降低模型的复杂度,以贪婪算法为基础,预测传播能力强的种子节点,通过失活种子节点集对谣言进行快速抑制。实验结果表明,该模型能够较为准确地模拟谣言的传播趋势,同时算法能够快速抑制谣言的传播。 展开更多
关键词 在线社交网络 网络安全 公共安全 谣言传播 贪婪算法
下载PDF
一种融合胶囊网络的分类方法 被引量:1
12
作者 王静红 张戴鹏 《计算机应用研究》 CSCD 北大核心 2022年第12期3574-3581,3586,共9页
目前的ADMET分类方法在对具有多特征性和特征关联性的化合物数据进行ADMET分类时存在不足。而且,对ADMET分类结果不具备可解释性。针对上述问题,提出一种融合胶囊网络的分类模型(CapsMC)。CapsMC模型首先提出一种feature-to-image图像... 目前的ADMET分类方法在对具有多特征性和特征关联性的化合物数据进行ADMET分类时存在不足。而且,对ADMET分类结果不具备可解释性。针对上述问题,提出一种融合胶囊网络的分类模型(CapsMC)。CapsMC模型首先提出一种feature-to-image图像转换算法。使用该算法将特征之间的关联关系和依赖关系作为考量纳入到分类依据中,实现特征的多层次提取。其次,探索胶囊网络的高级应用,提出一种认知推理机制。使用该机制对特征进行认知推理,实现ADMET的可解释性分类。模型在五种ADMET数据集上的实验结果表明,CapsMC模型可以高效实现ADMET的可解释性分类。 展开更多
关键词 ADMET 图像转换 胶囊网络 认知推理机制 可解释性分类
下载PDF
双路自编码器的属性网络表示学习
13
作者 王静红 周志霞 +1 位作者 王辉 李昊康 《计算机应用》 CSCD 北大核心 2023年第8期2338-2344,共7页
属性网络表示学习的目的是在保证网络中节点性质的前提下,结合结构和属性信息学习节点的低维稠密向量表示。目前属性网络表示学习方法忽略了网络中属性信息的学习,且这些方法中的属性信息与网络拓扑结构的交互性不足,不能高效融合网络... 属性网络表示学习的目的是在保证网络中节点性质的前提下,结合结构和属性信息学习节点的低维稠密向量表示。目前属性网络表示学习方法忽略了网络中属性信息的学习,且这些方法中的属性信息与网络拓扑结构的交互性不足,不能高效融合网络结构和属性信息。针对以上问题,提出一种双路自编码器的属性网络表示学习(DENRL)算法。首先,通过多跳注意力机制捕获节点的高阶邻域信息;其次,设计低通拉普拉斯滤波器去除高频信号,并迭代获取重要邻居节点的属性信息;最后,构建自适应融合模块,通过结构和属性信息的一致性及差异性约束来增加对重要信息的获取,并通过监督两个自编码器的联合重构损失函数训练编码器。在Cora、Citeseer、Pubmed和Wiki数据集上的实验结果表明,与DeepWalk、ANRL(Attributed Network Representation Learning)等算法相比,DENRL算法在3个引文网络数据集上聚类准确率最高、算法运行时间最少,在Cora数据集上聚类准确率为0.775和运行时间为0.460 2 s;且DENRL算法在Cora和Citeseer数据集上链路预测精确率最高,分别达到了0.961和0.970。可见,属性与结构信息的融合及交互学习可以获得更强的节点表示能力。 展开更多
关键词 属性网络 网络表示学习 自编码器 交互学习 注意力机制
下载PDF
基于图核的异质信息网络链路预测方法 被引量:4
14
作者 赵妍 赵书良 马秋微 《计算机应用研究》 CSCD 北大核心 2021年第10期3125-3130,共6页
链路预测是图挖掘主要研究的问题,其研究重点是提取图的特征信息,现有研究方法大多只关注网络拓扑结构而忽略了节点属性信息。针对该问题,提出了基于图核的链路预测方法NGLP。该方法能挖掘有效、可用的元路径;基于元路径对预测对象生成... 链路预测是图挖掘主要研究的问题,其研究重点是提取图的特征信息,现有研究方法大多只关注网络拓扑结构而忽略了节点属性信息。针对该问题,提出了基于图核的链路预测方法NGLP。该方法能挖掘有效、可用的元路径;基于元路径对预测对象生成带节点属性的子图,使用子图表示被预测的链路;然后利用图核方法计算子图之间的相似性;最后训练SVM得出链路预测结果。实验结果表明,提出方法与其他方法相比具有更高的精度和更强的稳定性。 展开更多
关键词 异质信息网络 链路预测 图核 元路径
下载PDF
水声传感器网络中粒子群与蒙特卡罗优化的移动定位算法 被引量:6
15
作者 郝诗雅 杨媛媛 +2 位作者 董怡靖 赵晓旭 陈嘉兴 《电子学报》 EI CAS CSCD 北大核心 2021年第2期292-299,共8页
针对水声传感器网络中移动定位算法的误差和鲁棒性问题,提出两种蒙特卡罗移动定位算法:CRMCL(Circular Ring Monte Carlo Localization)和PRMCL(Particle Swarm Optimization for Circular Ring Monte Carlo Localization).CRMCL利用1... 针对水声传感器网络中移动定位算法的误差和鲁棒性问题,提出两种蒙特卡罗移动定位算法:CRMCL(Circular Ring Monte Carlo Localization)和PRMCL(Particle Swarm Optimization for Circular Ring Monte Carlo Localization).CRMCL利用1跳锚节点构建圆形采样区域和圆环过滤器.通过定义样本密度得到合理的样本数,论证圆环参数与过滤区域面积的关系.通过仿真实验得到合理的圆环参数,并以此构建高效的过滤器,降低定位误差.PRMCL使用粒子群算法优化CRMCL过滤后的样本,降低了无效样本的数目,增强了算法的鲁棒性.仿真表明,在不需要额外硬件的情况下,CRMCL和PRMCL比蒙特卡罗及其改进算法误差小、鲁棒性强. 展开更多
关键词 水声传感器网络 移动定位 蒙特卡罗 粒子群算法 圆环过滤器
下载PDF
基于全局卷积神经网络的复杂图像语义分割方法 被引量:3
16
作者 张丹 柳爽 +2 位作者 张晓娜 时光 刘京 《舰船电子工程》 2021年第1期82-88,共7页
语义分割的场景图像易受不同光照强度以及类别多样性的影响,尤其是在复杂的图像分割任务中,由于不同物体间的像素值差异过大或过小,造成分割图像的纹理和几何特征缺失,即产生欠分割、过分割现象。针对上述问题,利用深度卷积神经网络,研... 语义分割的场景图像易受不同光照强度以及类别多样性的影响,尤其是在复杂的图像分割任务中,由于不同物体间的像素值差异过大或过小,造成分割图像的纹理和几何特征缺失,即产生欠分割、过分割现象。针对上述问题,利用深度卷积神经网络,研究基于全局卷积神经网络的复杂图像语义分割方法。首先,提出多尺度残差空间金字塔池化模块,在网络中获取到更加稠密和完备的图像低层特征[1];其次,网络考虑全局信息,提出基于注意力机制的解码器模块,有效捕获图像像素的纹理特征、颜色特征和上下文信息,从而得到完整的分割结果。该方法在Camvid数据集上分割精确度达68.5%(MIoU)且在Cityscapes数据集上分割精度达78.3%。 展开更多
关键词 语义分割 欠分割 过分割 深度卷积神经网络 空间金字塔池化 注意力机制
下载PDF
多视角层次聚类下的无线网络入侵检测算法 被引量:3
17
作者 董新玉 解滨 +1 位作者 赵旭升 高新宝 《计算机科学与探索》 CSCD 北大核心 2022年第12期2752-2764,共13页
针对现有基于监督学习的无线网络入侵检测算法误检率高、难以发现未知类型攻击行为、获取带标记网络数据代价大的问题,提出一种基于多视角层次聚类的无监督无线网络入侵检测算法。该算法基于无监督学习,不需要为参与分类器学习的大量无... 针对现有基于监督学习的无线网络入侵检测算法误检率高、难以发现未知类型攻击行为、获取带标记网络数据代价大的问题,提出一种基于多视角层次聚类的无监督无线网络入侵检测算法。该算法基于无监督学习,不需要为参与分类器学习的大量无线网络数据进行人工标记,具有易获取训练数据集和发现未知类型攻击行为的优势,同时该算法引入多视角余弦距离作为层次聚类中无线网络数据对象间相似性度量,使聚类结果更加合理,对网络数据行为的判定更加准确,在一定程度上降低了入侵检测的误检率。选用公开无线网络攻击数据集(AWID)进行实验,通过主成分分析法对实验数据集进行降维处理,很大程度上降低了入侵检测算法的时间复杂度。实验结果表明,与传统的无线网络入侵检测算法相比,提出的多视角层次聚类下的无线网络入侵检测算法在检测率、误检率和发现未知攻击类型等性能上都有显著提升。 展开更多
关键词 多视角 层次聚类 无线网络 入侵检测 主成分分析(PCA)
下载PDF
基于时空图卷积网络的城市交通流预测模型 被引量:1
18
作者 路佳玲 魏志成 田多 《武汉理工大学学报(交通科学与工程版)》 2023年第2期234-238,共5页
针对交通流的高度非线性和复杂性特征,构建了多因子图构建时空图卷积网络(multi-factor graph construction spatio-temporal graph convolutional network,MFGC-STGCN),进行交通流预测.提出了获取节点间空间关联性的图构建算法,通过考... 针对交通流的高度非线性和复杂性特征,构建了多因子图构建时空图卷积网络(multi-factor graph construction spatio-temporal graph convolutional network,MFGC-STGCN),进行交通流预测.提出了获取节点间空间关联性的图构建算法,通过考虑节点间交互交通流数量、交互时间代价,以及流出交通流相似度三个因子,构建图的邻接矩阵.基于图卷积网络(graph convolutional network,GCN),以图的邻接矩阵构建拉普拉斯矩阵,提取交通流的空间特征.基于门控线性单元(gated linear units,GLU),提取交通流的时间特征.使用石家庄二环范围的网约车数据对模型进行评价.结果表明:MFGC-STGCN的预测精度优于其他对比预测模型. 展开更多
关键词 交通流预测 MFGC-STGCN 邻接矩阵 图卷积网络
下载PDF
基于网络核心体的复杂网络控制分析 被引量:1
19
作者 王媛媛 袁正中 赵琛 《动力学与控制学报》 2021年第5期65-69,共5页
针对无向网络实际控制问题,提出了一种有效设置控制输入矩阵,从而完成网络控制的方法.该方法表明,在一定条件下,对网络控制核心体实施控制即可控制整个网络.实例检验了理论分析的结果,表明该理论的正确性和可行性.该项研究揭示了无向网... 针对无向网络实际控制问题,提出了一种有效设置控制输入矩阵,从而完成网络控制的方法.该方法表明,在一定条件下,对网络控制核心体实施控制即可控制整个网络.实例检验了理论分析的结果,表明该理论的正确性和可行性.该项研究揭示了无向网络中重要结构对整个网络的支配作用,为控制大型复杂网络提供了一个有效的方法. 展开更多
关键词 无向网络 网络叶子 网络可控性
下载PDF
基于异质信息网络的文本相似性度量方法
20
作者 马秋微 赵书良 赵妍 《中文信息学报》 CSCD 北大核心 2023年第9期108-120,共13页
文本相似性度量对基于文本的分类,聚类以及排序等有着广泛的影响。现有的大部分文本相似性度量方法不仅文本特征粒度单一化,而且忽略了非结构化文本数据中的结构化信息。该文将文本相似性度量问题转化为加权异质信息网络中的节点相似性... 文本相似性度量对基于文本的分类,聚类以及排序等有着广泛的影响。现有的大部分文本相似性度量方法不仅文本特征粒度单一化,而且忽略了非结构化文本数据中的结构化信息。该文将文本相似性度量问题转化为加权异质信息网络中的节点相似性度量问题,利用元路径的结构特性和语义特性度量文本的显式语义相似性,使其度量结果更准确并且更具有可解释性。首先,结合世界知识库,扩大文本特征粒度,构建加权文本异质信息网络,将非结构化文本类型数据表示为结构化的异质信息网络的形式。其次,挖掘元路径,并提出基于元路径的ω-PageRank-Nibble子图划分算法,得到包含给定文本节点集的局部图。根据局部图,计算并存储特定元路径的交换矩阵,为后续相似性度量降低时间及空间成本。最后,提出AllPathSim耦合相似性度量方法,度量文本类型节点的相似性。在图剪枝方面,利用基于元路径的ω-PageRank-Nibble算法划分子图,与处理整张图相比,时间成本和空间成本降低效果显著。在相似性度量方面,与同期最优的相同类型节点度量方法相比,AllPathSim耦合相似性度量方法与度量结果的相关系数在20NG和GCAT数据集上分别提高了6.1%和6.9%。 展开更多
关键词 相似性度量 加权异质信息网络 元路径 文本挖掘
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部