随着信息技术的快速发展,传统物理实验课程正面临着设备不足、实验空间有限和教学资源不平衡等挑战。这不仅减少学生进行实验的机会,也限制他们的动手能力,进而影响了实验教学的效果和学生的综合素质培养。本文针对农科大学物理实验课...随着信息技术的快速发展,传统物理实验课程正面临着设备不足、实验空间有限和教学资源不平衡等挑战。这不仅减少学生进行实验的机会,也限制他们的动手能力,进而影响了实验教学的效果和学生的综合素质培养。本文针对农科大学物理实验课程中如何运用智慧教育技术的实际操作进行了探索。借助虚拟实验室与仿真技术的应用,突破传统实验设备的局限性。通过引进翻转课堂方法,加深学生在实际生活中的互动,提高他们的实践技能。通过智能数据分析系统实时监测学生的实验数据,生成个性化反馈,帮助教师进行精准指导。将物理学与农业应用结合,丰富课程内容,提升了学生解决实际问题的能力。这将不仅提升物理实验课程的教学质量,还为未来的教育改革提供了有价值的经验和理论支持。With the rapid development of information technology, traditional physics experiment courses face challenges such as insufficient equipment, limited laboratory space, and unbalanced teaching resources. These not only reduce the opportunities for students to conduct experiments but also limit their hands-on ability, affecting the effectiveness of experimental teaching and the comprehensive quality training of students. This article explores the practical operation of how to use smart education technology in the physics experiment course at agricultural universities. With the application of virtual laboratory and simulation technology, the limitations of traditional experimental equipment are broken through. By introducing the flipped classroom approach, students deepen their real-life interactions and improve their practical skills. The intelligent data analysis system monitors students’ experimental data in real time and generates personalized feedback to help teachers provide precise guidance. Combining physics with agricultural applications enriches the course content and improves students’ ability to solve practical problems. This will not only improve the teaching quality of physics experiment courses, but also provide valuable experience and theoretical support for future educational reform.展开更多
在智慧教育背景下,农科大学物理教学正经历显著的转型。传统上,农科大学的物理课程更关注理论,与农业实践关联较少,导致学生对物理在农业中的意义认识不深。随着智慧教育的普及,教育者逐渐使用虚拟实验平台、实时数据解析工具和线上资源...在智慧教育背景下,农科大学物理教学正经历显著的转型。传统上,农科大学的物理课程更关注理论,与农业实践关联较少,导致学生对物理在农业中的意义认识不深。随着智慧教育的普及,教育者逐渐使用虚拟实验平台、实时数据解析工具和线上资源,将物理理念与农业实际问题结合。通过仿真实验和具体实践案例,在模拟场景下帮助学生探讨物理原理在农业中的应用,提高他们的实际操作能力和问题应对方法。通过制定个性化学习路线,并结合实时反馈,更高效地满足学生的学习偏好,促进其在物理教育领域的个性化发展。这种模式将促进农业教育现代化和科技创新,为农业未来发展注入新的活力和推动力。In the context of smart education, physics teaching at agricultural universities is undergoing significant transformation. Traditionally, the physics courses at these universities have primarily focused on theoretical aspects with minimal connection to agricultural practice, resulting in students having a limited understanding of the relevance of physics in agriculture. With the widespread adoption of smart education, educators are increasingly utilizing virtual experiment platforms, real-time data analysis tools, and online resources to integrate physics concepts with real-world agricultural issues. Through simulated experiments and practical case studies in virtual scenarios, students are enabled to explore the application of physical principles in agriculture, thereby enhancing their practical skills and problem-solving abilities. By developing personalized learning pathways and incorporating real-time feedback, this approach more effectively meets students’ unique learning preferences, promoting individualized development in the field of physics education. This model will advance the modernization and technological innovation of agricultural education, injecting new vitality and momentum into the future development of agriculture.展开更多
为明确生物炭在农业领域的研究进展,本文基于文献计量学方法,利用VOSviewer以及CiteSpace等知识图谱工具,以Web of Science(WOS)和CNKI为数据源,从发文时间分布、国家(区域)分布、期刊分布、主要机构和研究主题等多维角度,综合分析了199...为明确生物炭在农业领域的研究进展,本文基于文献计量学方法,利用VOSviewer以及CiteSpace等知识图谱工具,以Web of Science(WOS)和CNKI为数据源,从发文时间分布、国家(区域)分布、期刊分布、主要机构和研究主题等多维角度,综合分析了1990—2021年全球及中国生物炭技术领域的整体发展路径、脉络、研究热点及发展态势,以期为未来科学研究提供参考。结果表明,在我国生物炭在农业研究领域,年度发文量呈明显上升趋势,表现出缓慢增长—平稳增长—快速增长3个阶段。生物炭技术在农业领域正在进入高速发展期,研究热点为生物炭的制备、生物炭的吸附作用、生物炭的土壤效应等。研究结果从相关文献的角度,定量、客观、科学地描述了生物炭土壤效应研究现状与趋势,并为生物炭在土壤科学问题研究提供理论参考。展开更多
文摘随着信息技术的快速发展,传统物理实验课程正面临着设备不足、实验空间有限和教学资源不平衡等挑战。这不仅减少学生进行实验的机会,也限制他们的动手能力,进而影响了实验教学的效果和学生的综合素质培养。本文针对农科大学物理实验课程中如何运用智慧教育技术的实际操作进行了探索。借助虚拟实验室与仿真技术的应用,突破传统实验设备的局限性。通过引进翻转课堂方法,加深学生在实际生活中的互动,提高他们的实践技能。通过智能数据分析系统实时监测学生的实验数据,生成个性化反馈,帮助教师进行精准指导。将物理学与农业应用结合,丰富课程内容,提升了学生解决实际问题的能力。这将不仅提升物理实验课程的教学质量,还为未来的教育改革提供了有价值的经验和理论支持。With the rapid development of information technology, traditional physics experiment courses face challenges such as insufficient equipment, limited laboratory space, and unbalanced teaching resources. These not only reduce the opportunities for students to conduct experiments but also limit their hands-on ability, affecting the effectiveness of experimental teaching and the comprehensive quality training of students. This article explores the practical operation of how to use smart education technology in the physics experiment course at agricultural universities. With the application of virtual laboratory and simulation technology, the limitations of traditional experimental equipment are broken through. By introducing the flipped classroom approach, students deepen their real-life interactions and improve their practical skills. The intelligent data analysis system monitors students’ experimental data in real time and generates personalized feedback to help teachers provide precise guidance. Combining physics with agricultural applications enriches the course content and improves students’ ability to solve practical problems. This will not only improve the teaching quality of physics experiment courses, but also provide valuable experience and theoretical support for future educational reform.
文摘在智慧教育背景下,农科大学物理教学正经历显著的转型。传统上,农科大学的物理课程更关注理论,与农业实践关联较少,导致学生对物理在农业中的意义认识不深。随着智慧教育的普及,教育者逐渐使用虚拟实验平台、实时数据解析工具和线上资源,将物理理念与农业实际问题结合。通过仿真实验和具体实践案例,在模拟场景下帮助学生探讨物理原理在农业中的应用,提高他们的实际操作能力和问题应对方法。通过制定个性化学习路线,并结合实时反馈,更高效地满足学生的学习偏好,促进其在物理教育领域的个性化发展。这种模式将促进农业教育现代化和科技创新,为农业未来发展注入新的活力和推动力。In the context of smart education, physics teaching at agricultural universities is undergoing significant transformation. Traditionally, the physics courses at these universities have primarily focused on theoretical aspects with minimal connection to agricultural practice, resulting in students having a limited understanding of the relevance of physics in agriculture. With the widespread adoption of smart education, educators are increasingly utilizing virtual experiment platforms, real-time data analysis tools, and online resources to integrate physics concepts with real-world agricultural issues. Through simulated experiments and practical case studies in virtual scenarios, students are enabled to explore the application of physical principles in agriculture, thereby enhancing their practical skills and problem-solving abilities. By developing personalized learning pathways and incorporating real-time feedback, this approach more effectively meets students’ unique learning preferences, promoting individualized development in the field of physics education. This model will advance the modernization and technological innovation of agricultural education, injecting new vitality and momentum into the future development of agriculture.
文摘为明确生物炭在农业领域的研究进展,本文基于文献计量学方法,利用VOSviewer以及CiteSpace等知识图谱工具,以Web of Science(WOS)和CNKI为数据源,从发文时间分布、国家(区域)分布、期刊分布、主要机构和研究主题等多维角度,综合分析了1990—2021年全球及中国生物炭技术领域的整体发展路径、脉络、研究热点及发展态势,以期为未来科学研究提供参考。结果表明,在我国生物炭在农业研究领域,年度发文量呈明显上升趋势,表现出缓慢增长—平稳增长—快速增长3个阶段。生物炭技术在农业领域正在进入高速发展期,研究热点为生物炭的制备、生物炭的吸附作用、生物炭的土壤效应等。研究结果从相关文献的角度,定量、客观、科学地描述了生物炭土壤效应研究现状与趋势,并为生物炭在土壤科学问题研究提供理论参考。