Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yield...Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yields of S. sarmentosum Bunge, S. bulbiferum Makino, and S. emarginatum Migo decreased with increasing Zn concentration in the solution, while shoot and root yields of S. alfredii increased when Zn concentration was ≤80 mg·L -1. At 80 mg·L -1 Zn, Zn concentration in shoots of S. alfredii reached 19.09 mg·g -1. S. alfredii was also more efficient in Zn translocation from roots to shoots, while Zn concentration in shoots was much higher than in roots. However, this was not the case for the other three species. The results showed that S. alfredii is a Zn hyperaccumulator and could be useful for the phytoremediation of Zn-contaminated soils.展开更多
文摘Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yields of S. sarmentosum Bunge, S. bulbiferum Makino, and S. emarginatum Migo decreased with increasing Zn concentration in the solution, while shoot and root yields of S. alfredii increased when Zn concentration was ≤80 mg·L -1. At 80 mg·L -1 Zn, Zn concentration in shoots of S. alfredii reached 19.09 mg·g -1. S. alfredii was also more efficient in Zn translocation from roots to shoots, while Zn concentration in shoots was much higher than in roots. However, this was not the case for the other three species. The results showed that S. alfredii is a Zn hyperaccumulator and could be useful for the phytoremediation of Zn-contaminated soils.