近年来,社会化推荐作为推荐算法之一被广泛应用于各大平台.由于引入了用户的社交信息,社会化推荐可以较好地缓解数据稀疏问题.然而,大部分社会化推荐难以高效地从原始信息中提取用户的有效信息,导致引入社会信息的同时也会引入大量噪声...近年来,社会化推荐作为推荐算法之一被广泛应用于各大平台.由于引入了用户的社交信息,社会化推荐可以较好地缓解数据稀疏问题.然而,大部分社会化推荐难以高效地从原始信息中提取用户的有效信息,导致引入社会信息的同时也会引入大量噪声.为了解决上述问题,本文提出了SRBHL(Social Recommendation Based on Hypergraph embedding and Limited attention)模型,通过超图嵌入模块提取用户的历史行为信息和社交信息,以缓解原始目标用户数据稀疏问题,并结合有限注意力模块来过滤原始信息的噪声,最后将得到的有效好友信息用于推荐.在Yelp-Urbana、Yelp-Phoenix和Epinions3个真实数据集上的实验结果表明SRBHL模型相比其他的推荐算法表现更出色.此外,本文还对SRBHL模型进行了鲁棒性分析,并给出了模型最优参数的取值范围.展开更多
纵向联邦学习(Vertical federated learning,VFL)是一种新兴的分布式机器学习技术,在保障隐私性的前提下,利用分散在各个机构的数据实现机器学习模型的联合训练.纵向联邦学习被广泛应用于工业互联网、金融借贷和医疗诊断等诸多领域中,...纵向联邦学习(Vertical federated learning,VFL)是一种新兴的分布式机器学习技术,在保障隐私性的前提下,利用分散在各个机构的数据实现机器学习模型的联合训练.纵向联邦学习被广泛应用于工业互联网、金融借贷和医疗诊断等诸多领域中,因此保证其隐私安全性具有重要意义.首先,针对纵向联邦学习协议中由于参与方交换的嵌入表示造成的隐私泄漏风险,研究由协作者发起的通用的属性推断攻击.攻击者利用辅助数据和嵌入表示训练一个攻击模型,然后利用训练完成的攻击模型窃取参与方的隐私属性.实验结果表明,纵向联邦学习在训练推理阶段产生的嵌入表示容易泄漏数据隐私.为了应对上述隐私泄漏风险,提出一种基于最大−最小策略的纵向联邦学习隐私保护方法(Privacy preservation method for vertical federated learning based on max-min strategy,PPVFL),其引入梯度正则组件保证训练过程主任务的预测性能,同时引入重构组件掩藏参与方嵌入表示中包含的隐私属性信息.最后,在钢板缺陷诊断工业场景的实验结果表明,相比于没有任何防御方法的VFL,隐私保护方法将攻击推断准确度从95%下降到55%以下,接近于随机猜测的水平,同时主任务预测准确率仅下降2%.展开更多
文摘近年来,社会化推荐作为推荐算法之一被广泛应用于各大平台.由于引入了用户的社交信息,社会化推荐可以较好地缓解数据稀疏问题.然而,大部分社会化推荐难以高效地从原始信息中提取用户的有效信息,导致引入社会信息的同时也会引入大量噪声.为了解决上述问题,本文提出了SRBHL(Social Recommendation Based on Hypergraph embedding and Limited attention)模型,通过超图嵌入模块提取用户的历史行为信息和社交信息,以缓解原始目标用户数据稀疏问题,并结合有限注意力模块来过滤原始信息的噪声,最后将得到的有效好友信息用于推荐.在Yelp-Urbana、Yelp-Phoenix和Epinions3个真实数据集上的实验结果表明SRBHL模型相比其他的推荐算法表现更出色.此外,本文还对SRBHL模型进行了鲁棒性分析,并给出了模型最优参数的取值范围.
文摘纵向联邦学习(Vertical federated learning,VFL)是一种新兴的分布式机器学习技术,在保障隐私性的前提下,利用分散在各个机构的数据实现机器学习模型的联合训练.纵向联邦学习被广泛应用于工业互联网、金融借贷和医疗诊断等诸多领域中,因此保证其隐私安全性具有重要意义.首先,针对纵向联邦学习协议中由于参与方交换的嵌入表示造成的隐私泄漏风险,研究由协作者发起的通用的属性推断攻击.攻击者利用辅助数据和嵌入表示训练一个攻击模型,然后利用训练完成的攻击模型窃取参与方的隐私属性.实验结果表明,纵向联邦学习在训练推理阶段产生的嵌入表示容易泄漏数据隐私.为了应对上述隐私泄漏风险,提出一种基于最大−最小策略的纵向联邦学习隐私保护方法(Privacy preservation method for vertical federated learning based on max-min strategy,PPVFL),其引入梯度正则组件保证训练过程主任务的预测性能,同时引入重构组件掩藏参与方嵌入表示中包含的隐私属性信息.最后,在钢板缺陷诊断工业场景的实验结果表明,相比于没有任何防御方法的VFL,隐私保护方法将攻击推断准确度从95%下降到55%以下,接近于随机猜测的水平,同时主任务预测准确率仅下降2%.