针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用...针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用到传统TGV中,对图像的不同区域进行不同强度的去噪,从而达到保护图像细节的效果。该算法首先采用滤波反投影(FBP)算法得到低剂量CT重建图像;然后利用基于直觉模糊熵的边缘指示函数对传统TGV模型进行改进;最后用改进后的模型对重建图像进行降噪处理。采用Shepp-Logan模型和数字胸腔模型(thorax phantom)仿真低剂量CT重建图像来验证算法的有效性。实验结果表明,所提算法的归一化均方距离(NMSD)和归一化平均绝对距离(NAAD)均比总变分(TV)降噪算法和广义总变分(TGV)降噪算法小,且可分别获得26.90 d B和44.58 d B的峰值信噪比(PSNR)。该算法在去除条形伪影的同时可以较好地保持图像的边缘和细节信息。展开更多
针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种结合非局部均值模糊扩散和扩展邻域双边滤波的中值先验(MP)重建算法。首先,使用基于非局部均值模糊扩散方法对中值先验分布的最大后验(MAP)重建算法进行改进,以...针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种结合非局部均值模糊扩散和扩展邻域双边滤波的中值先验(MP)重建算法。首先,使用基于非局部均值模糊扩散方法对中值先验分布的最大后验(MAP)重建算法进行改进,以减少重建图像中的噪声;然后,采用基于扩展邻域的双边滤波方法对重建图像进行处理,以保持图像的边缘和细节信息,进一步提高重建图像的信噪比。采用Shepp-Logan模型和胸腔模型来验证算法的有效性,实验结果表明,与滤波反投影(FBP)、中值根先验(MRP)、非局部均值模糊扩散的MP重建(NLMMP)算法和非局部均值双边滤波的MP重建(NLMBFMP)算法相比,所提新算法的归一化均方距离和均方绝对误差最小,且信噪比最高,分别为10.20 d B和15.51 d B。该重建算法可以在对重建图像进行降噪的同时保持了图像的边缘和细节信息,改善了低剂量CT图像质量退化的问题,获得高信噪比和高质量的重建图像。展开更多
文摘针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种自适应广义总变分(ATGV)降噪算法。该算法考虑了传统广义总变分(TGV)算法在降噪时模糊图像边缘信息的缺点,把可以有效区分图像平滑区和细节区的直觉模糊熵应用到传统TGV中,对图像的不同区域进行不同强度的去噪,从而达到保护图像细节的效果。该算法首先采用滤波反投影(FBP)算法得到低剂量CT重建图像;然后利用基于直觉模糊熵的边缘指示函数对传统TGV模型进行改进;最后用改进后的模型对重建图像进行降噪处理。采用Shepp-Logan模型和数字胸腔模型(thorax phantom)仿真低剂量CT重建图像来验证算法的有效性。实验结果表明,所提算法的归一化均方距离(NMSD)和归一化平均绝对距离(NAAD)均比总变分(TV)降噪算法和广义总变分(TGV)降噪算法小,且可分别获得26.90 d B和44.58 d B的峰值信噪比(PSNR)。该算法在去除条形伪影的同时可以较好地保持图像的边缘和细节信息。
文摘针对低剂量计算机断层扫描(CT)重建图像时出现明显条形伪影的现象,提出一种结合非局部均值模糊扩散和扩展邻域双边滤波的中值先验(MP)重建算法。首先,使用基于非局部均值模糊扩散方法对中值先验分布的最大后验(MAP)重建算法进行改进,以减少重建图像中的噪声;然后,采用基于扩展邻域的双边滤波方法对重建图像进行处理,以保持图像的边缘和细节信息,进一步提高重建图像的信噪比。采用Shepp-Logan模型和胸腔模型来验证算法的有效性,实验结果表明,与滤波反投影(FBP)、中值根先验(MRP)、非局部均值模糊扩散的MP重建(NLMMP)算法和非局部均值双边滤波的MP重建(NLMBFMP)算法相比,所提新算法的归一化均方距离和均方绝对误差最小,且信噪比最高,分别为10.20 d B和15.51 d B。该重建算法可以在对重建图像进行降噪的同时保持了图像的边缘和细节信息,改善了低剂量CT图像质量退化的问题,获得高信噪比和高质量的重建图像。