The Gd3+-doped TiO2 photocatalyst was prepared by the sol-gel and impregnation method. The effect of Gd3+ doping on crystalline size, BET surface area and photocatalytic activity was studied by XRD, FTIR, BET, UV-Vis ...The Gd3+-doped TiO2 photocatalyst was prepared by the sol-gel and impregnation method. The effect of Gd3+ doping on crystalline size, BET surface area and photocatalytic activity was studied by XRD, FTIR, BET, UV-Vis diffuse reflection spectroscopy, surface photovoltage spectroscopy (SPS). The activities of TiO2 and Gd3+-doped TiO2 catalysts for photocatalytic degradation of ethylene were studied by means of in situ FTIR. The photocatalytic reaction rate constant of ethylene becomes larger through Gd3+ doping. The rate constant of TiO2 was k1=8.51×10-4 min-1, while that of Gd/TiO2 was k2=1.85×10-3 min-1. At the same time, the yield of CO2 increased with Gd3+ doping. The enhancement in photocatalytic activity is probably due to the increase of light absorption, higher content of anatase, smaller crystal line size and higher specific surface area. In addition, the higher photocatalytic activity of Gd3+-doped TiO2 might be attributed to the effective separation of photo-generated electron-hole pairs.展开更多
TiO2 membranes were prepared on aluminum-alloy thin plates by electrophoretic deposition and dip coating in a colloid solution of TiO2, respectively. The photocatalytic activity of TiO2 membrane was compared using eth...TiO2 membranes were prepared on aluminum-alloy thin plates by electrophoretic deposition and dip coating in a colloid solution of TiO2, respectively. The photocatalytic activity of TiO2 membrane was compared using ethylene as reactant, and the crystal and morphological structure of the membrane were characterized by XRD and SEM. The results showed that a more compact membrane with high loading of TiO2 but lower photocatalytic activity of unit TiO2 mass was obtained by electrophoresis compared with dip coating method. The addition of polyethylene glycol (PEG) to the sol of TiO2 could improve the specific photocatalytic activity (ethylene conversion per unit mass TiO2 and unit area of membrane piece) of the electrophoresis-membrane prepared from the sol, but could not change the specific photocatalytic activity of the dip-coating membrane from the sol. The ethylene conversion on the electrophoresis membrane prepared from the sol containing PEG (50 g·L-1) was 9 times of that on the dip coating membrane. The effect of PEG on the properties of electrophoresis-membrane of TiO2 was attributed to the change of electrokinetic properties of sol. Addition of PEG decreased of colloid particles and the electroosmosis velocity of diffuse layer of colloid particles. These favored the formation of a low compact and porous membrane on the electrode in electric field, and thus increasing the availability of TiO2 in photocatalytic process.展开更多
The photocatalytic degradation of several organic compounds in airstreams was studied at room temperature by using a bed reactor packed with the commercial HZSM-5 and operated in a circulating mode. It was found that ...The photocatalytic degradation of several organic compounds in airstreams was studied at room temperature by using a bed reactor packed with the commercial HZSM-5 and operated in a circulating mode. It was found that the raw HZSM-5 shows an unanticipated photocatalytic activity for oxidating ethylene, bromomethane and methyl orange. XRF and AAS analyses reveal that the photocatalytic activity of the ZSM-5 results from the trace amount of iron impurity in the sample, and the photoactivity is positively related with the content of iron. The primary results of characterization by XRD, DRS, XPS and SPVS suggest that the most of Fe existed in the framework of zeolite and in a tetrahedral coordination. The iron species might be excited by UV irradiation to form a charge transfer excited complex along with the ligands and an electron excited state of Fe 3+, which are responsible for the photocatalytic behavior of zeolites.展开更多
文摘The Gd3+-doped TiO2 photocatalyst was prepared by the sol-gel and impregnation method. The effect of Gd3+ doping on crystalline size, BET surface area and photocatalytic activity was studied by XRD, FTIR, BET, UV-Vis diffuse reflection spectroscopy, surface photovoltage spectroscopy (SPS). The activities of TiO2 and Gd3+-doped TiO2 catalysts for photocatalytic degradation of ethylene were studied by means of in situ FTIR. The photocatalytic reaction rate constant of ethylene becomes larger through Gd3+ doping. The rate constant of TiO2 was k1=8.51×10-4 min-1, while that of Gd/TiO2 was k2=1.85×10-3 min-1. At the same time, the yield of CO2 increased with Gd3+ doping. The enhancement in photocatalytic activity is probably due to the increase of light absorption, higher content of anatase, smaller crystal line size and higher specific surface area. In addition, the higher photocatalytic activity of Gd3+-doped TiO2 might be attributed to the effective separation of photo-generated electron-hole pairs.
文摘TiO2 membranes were prepared on aluminum-alloy thin plates by electrophoretic deposition and dip coating in a colloid solution of TiO2, respectively. The photocatalytic activity of TiO2 membrane was compared using ethylene as reactant, and the crystal and morphological structure of the membrane were characterized by XRD and SEM. The results showed that a more compact membrane with high loading of TiO2 but lower photocatalytic activity of unit TiO2 mass was obtained by electrophoresis compared with dip coating method. The addition of polyethylene glycol (PEG) to the sol of TiO2 could improve the specific photocatalytic activity (ethylene conversion per unit mass TiO2 and unit area of membrane piece) of the electrophoresis-membrane prepared from the sol, but could not change the specific photocatalytic activity of the dip-coating membrane from the sol. The ethylene conversion on the electrophoresis membrane prepared from the sol containing PEG (50 g·L-1) was 9 times of that on the dip coating membrane. The effect of PEG on the properties of electrophoresis-membrane of TiO2 was attributed to the change of electrokinetic properties of sol. Addition of PEG decreased of colloid particles and the electroosmosis velocity of diffuse layer of colloid particles. These favored the formation of a low compact and porous membrane on the electrode in electric field, and thus increasing the availability of TiO2 in photocatalytic process.
文摘The photocatalytic degradation of several organic compounds in airstreams was studied at room temperature by using a bed reactor packed with the commercial HZSM-5 and operated in a circulating mode. It was found that the raw HZSM-5 shows an unanticipated photocatalytic activity for oxidating ethylene, bromomethane and methyl orange. XRF and AAS analyses reveal that the photocatalytic activity of the ZSM-5 results from the trace amount of iron impurity in the sample, and the photoactivity is positively related with the content of iron. The primary results of characterization by XRD, DRS, XPS and SPVS suggest that the most of Fe existed in the framework of zeolite and in a tetrahedral coordination. The iron species might be excited by UV irradiation to form a charge transfer excited complex along with the ligands and an electron excited state of Fe 3+, which are responsible for the photocatalytic behavior of zeolites.
基金supported by the National Basic Research Program of China (973 Program,2013CB632405)the National Natural Science Foundation of China (21033003 and 21173043)~~