期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
面向源-目的地流的多元时空数据可视分析 被引量:1
1
作者 周思艺 李天瑞 《计算机应用》 CSCD 北大核心 2024年第2期452-459,共8页
交通智能(IC)卡可以记录居民的移动出行,反映居民的源-目的地(OD)信息;但智能卡记录的OD流数据规模大,直接可视化空间分布容易导致视觉杂乱,并且多元数据类型多,更难以和流数据结合对比分析。首先,针对直接可视化大规模OD数据的空间分... 交通智能(IC)卡可以记录居民的移动出行,反映居民的源-目的地(OD)信息;但智能卡记录的OD流数据规模大,直接可视化空间分布容易导致视觉杂乱,并且多元数据类型多,更难以和流数据结合对比分析。首先,针对直接可视化大规模OD数据的空间分布容易视觉遮挡的问题,提出基于正交非负矩阵分解(ONMF)的流聚类方法。所提方法对源-目的地数据聚类后再可视化,可以减少不必要的遮挡。然后,针对多元时空数据类型多难以结合对比分析的问题,设计了公交站点多元时序数据视图。该可视化方法将公交站点的流量大小和空气质量、空气温度、相对湿度、降雨量这四类多元数据在同一时间序列上编码,提高了视图的空间利用率并且可以对比分析。再次,为了辅助用户探索分析,开发了基于OD流和多元数据的交互式可视分析系统,并设计了多种交互操作提升用户探索效率。最后,基于新加坡交通智能卡数据集,从聚类效果和运行时间对该聚类方法评估。结果显示,在用轮廓系数评估聚类效果上,所提方法比原始方法提升了0.028,比用K均值聚类方法提升了0.253;在运行时间上比聚类效果较好的ONMFS(ONMF through Subspace exploration)方法少了254 s。通过案例分析和系统功能对比验证了系统的有效性。 展开更多
关键词 交通智能卡 源-目的地流 多元数据 时空数据 可视分析
下载PDF
基于伪实体数据增强的高精准率医学领域实体关系抽取
2
作者 郭安迪 贾真 李天瑞 《计算机应用》 CSCD 北大核心 2024年第2期393-402,共10页
针对医学领域知识密集、实体抽取和关系分类存在误差传递的问题,提出一种基于伪实体数据增强的高精准率的实体关系抽取框架。首先,在实体抽取模块添加基于Transformer的特征读取单元捕捉类别信息,以在密集的实体中准确识别医学长实体;其... 针对医学领域知识密集、实体抽取和关系分类存在误差传递的问题,提出一种基于伪实体数据增强的高精准率的实体关系抽取框架。首先,在实体抽取模块添加基于Transformer的特征读取单元捕捉类别信息,以在密集的实体中准确识别医学长实体;其次,在流水线抽取框架的基础上插入关系负例生成模块,通过基于欠采样的伪实体生成模型生成混淆关系分类模型的伪实体,并通过三种数据增强生成策略提升模型鉴别主语宾语颠倒、主语宾语边界错误和关系分类错误的能力;最后,通过基于悬浮标记的关系分类模型缓解数据增强带来的训练时间剧增的问题。在CMeIE数据集中,对比了目前主流的4个模型。实体抽取部分相较于次优模型PL-Marker(Packed Levitated Marker),F1值提升了2.26%;实体关系抽取相较于次优模型CBLUE(Chinese Biomedical Language Understanding Evaluation)提出的流水线抽取模型,F1值提升了5.45%,精准率提升了15.62%。实验结果表明使用特征读取单元和伪实体数据增强模块可有效提高抽取的精准率。 展开更多
关键词 实体关系抽取 数据增强 高精准率 医学领域 关系负例生成
下载PDF
面向方面级情感分析的交互式关系图注意力网络
3
作者 郭磊 贾真 李天瑞 《计算机应用》 CSCD 北大核心 2024年第3期696-701,共6页
方面级情感分析领域主要采用基于注意力机制的神经网络模型,这类模型忽略了方面词与观点词之间的依存关系和方面词与上下文词之间的距离,导致该类模型情感分类结果不够精确。为了解决上述问题,建立一种交互式关系图注意力网络(RI-GAT)... 方面级情感分析领域主要采用基于注意力机制的神经网络模型,这类模型忽略了方面词与观点词之间的依存关系和方面词与上下文词之间的距离,导致该类模型情感分类结果不够精确。为了解决上述问题,建立一种交互式关系图注意力网络(RI-GAT)模型。首先,通过长短期记忆(LSTM)网络学习句子的语义特征;然后,将学习的语义特征结合句子的位置信息生成新的特征;最后,在新的特征中提取各方面词和观点词之间的依存关系,实现对句法依存信息和位置信息的高效利用。在Laptop、Restaurant和Twitter数据集上的实验结果表明,相较于次优的动态多通道图卷积网络(DM-GCN),RI-GAT模型分类准确率(Acc)提高了0.67、1.65和1.36个百分点,说明了RI-GAT模型可以更好地建立方面词和意见词之间的联系,使得情感分类更加精确。 展开更多
关键词 方面级情感分析 图注意力网络 语义特征 观点倾向 网络评论
下载PDF
基于医疗文本数据聚类的帕金森病早期诊断预测 被引量:6
4
作者 张晓博 杨燕 +2 位作者 李天瑞 陆凡 彭莉兰 《计算机应用》 CSCD 北大核心 2020年第10期3088-3094,共7页
针对多发于老龄人群的帕金森病(PD)的早期智能化诊断的问题,提出基于医疗检测文本信息数据的聚类技术来对PD进行分析预测。首先,对原始数据集进行预处理以获取有效特征信息,并通过主成分分析(PCA)方法将原始特征分别降维到8个不同维度... 针对多发于老龄人群的帕金森病(PD)的早期智能化诊断的问题,提出基于医疗检测文本信息数据的聚类技术来对PD进行分析预测。首先,对原始数据集进行预处理以获取有效特征信息,并通过主成分分析(PCA)方法将原始特征分别降维到8个不同维度的维度空间;然后,应用5个传统的经典聚类模型和3种不同的聚类集成方法分别对8个维度空间的数据进行聚类;最后,采用4个聚类性能指标来预测数据集中的多巴胺异常PD患者、健康体和无多巴胺缺失(SWEDD)PD患者。仿真结果显示,PCA特征维度值取30时,高斯混合模型(GMM)的聚类准确度达到89.12%;PCA特征维度值取70时,谱聚类(SC)的聚类准确度达到61.41%;PCA特征维度值取80时,元聚类算法(MCLA)的聚类准确度达到59.62%。对比实验结果表明,5种经典聚类方法中,PCA的特征维度值小于40时,高斯混合模型聚类效果最佳;3种聚类集成方法中,对于不同的特征维度,MCLA的聚类性能均表现优异,进而为PD的早期智能化辅助诊断提供了技术和理论支撑。 展开更多
关键词 帕金森病 医疗文本数据 主成分分析 聚类 聚类集成
下载PDF
利用混杂核模糊补互信息选择特征
5
作者 袁钟 陈红梅 +1 位作者 王志红 李天瑞 《计算机研究与发展》 EI CSCD 北大核心 2023年第5期1111-1120,共10页
模糊粗糙集理论目前在数据挖掘和机器学习等领域受到了广泛的关注.该理论提供了一种能克服离散化问题的有效工具,并能直接应用于数值或混合属性数据.在模糊粗糙集模型中,定义模糊关系来测量对象之间的相似性,数值属性值不再需要离散化.... 模糊粗糙集理论目前在数据挖掘和机器学习等领域受到了广泛的关注.该理论提供了一种能克服离散化问题的有效工具,并能直接应用于数值或混合属性数据.在模糊粗糙集模型中,定义模糊关系来测量对象之间的相似性,数值属性值不再需要离散化.模糊粗糙集理论已经被成功应用于许多领域,如属性约简、规则提取、聚类分析和离群点检测.信息熵被引入到模糊粗糙集理论进行模糊和不确定信息的表示,产生了不同形式的模糊不确定性度量,如模糊信息熵、模糊补熵和模糊互信息等.然而,大部分所提关于决策的模糊互信息都是非单调的,这可能导致一个不收敛的学习算法.为此,基于混杂核模糊补熵,定义了关于决策的模糊补互信息,证明了其随特征呈单调性变化.进而,利用混杂核模糊补互信息探索特征选择方法并且设计了相关的算法.实验结果展示了在大多数情况下所提算法可以选取更少的特征且能保持或提高分类准确率. 展开更多
关键词 模糊粗糙集理论 混杂核 补熵 不确定性度量 特征选择
下载PDF
判别多维标度特征学习
6
作者 唐海涛 王红军 李天瑞 《计算机应用》 CSCD 北大核心 2023年第5期1323-1329,共7页
传统多维标度方法学习得到的低维嵌入保持了数据点的拓扑结构,但忽略了低维嵌入数据类别间的判别性。基于此,提出一种基于多维标度法的无监督判别性特征学习方法——判别多维标度模型(DMDS),该模型能在学习低维数据表示的同时发现簇结构... 传统多维标度方法学习得到的低维嵌入保持了数据点的拓扑结构,但忽略了低维嵌入数据类别间的判别性。基于此,提出一种基于多维标度法的无监督判别性特征学习方法——判别多维标度模型(DMDS),该模型能在学习低维数据表示的同时发现簇结构,并通过使同簇的低维嵌入更接近,让学习到的数据表示更具有判别性。首先,设计了DMDS对应的目标公式,体现所学习特征在保留拓扑性的同时增强判别性;其次,对目标函数进行了推理和求解,并根据推理过程设计所对应的迭代优化算法;最后,在12个公开的数据集上对聚类平均准确率和平均纯度进行对比实验。实验结果表明,根据Friedman统计量综合评价DMDS在12个数据集上的性能优于原始数据表示和传统多维标度模型的数据表示,它的低维嵌入更具有判别性。 展开更多
关键词 判别性特征学习 多维标度法 降维 模糊聚类 迭代优化算法
下载PDF
基于k个标记样本的弱监督学习框架 被引量:2
7
作者 付治 王红军 +2 位作者 李天瑞 滕飞 张继 《软件学报》 EI CSCD 北大核心 2020年第4期981-990,共10页
聚类是机器学习领域中的一个研究热点,弱监督学习是半监督学习中一个重要的研究方向,有广泛的应用场景.在对聚类与弱监督学习的研究中,提出了一种基于k个标记样本的弱监督学习框架.该框架首先用聚类及聚类置信度实现了标记样本的扩展.其... 聚类是机器学习领域中的一个研究热点,弱监督学习是半监督学习中一个重要的研究方向,有广泛的应用场景.在对聚类与弱监督学习的研究中,提出了一种基于k个标记样本的弱监督学习框架.该框架首先用聚类及聚类置信度实现了标记样本的扩展.其次,对受限玻尔兹曼机的能量函数进行改进,提出了基于k个标记样本的受限玻尔兹曼机学习模型.最后,完成了对该模型的推理并设计相关算法.为了完成对该框架和模型的检验,选择公开的数据集进行对比实验,实验结果表明,基于k个标记样本的弱监督学习框架实验效果较好. 展开更多
关键词 机器学习 弱监督学习 聚类
下载PDF
城郊公交线网hub站点和milk-run线路设计 被引量:1
8
作者 罗孝羚 蒋阳升 +2 位作者 吴奇 赵斌 姚志洪 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第3期135-140,157,共7页
为解决现有的常规公交线网设计方法没有考虑实际城郊客流需求的特殊性,造成乘客出行时间过长的问题.构建基于milk-run和hub-spoke的设计理念,且同时考虑载客能力的城郊公交线网优化模型,并提出相应的遗传算法实现模型的求解.在所提出的... 为解决现有的常规公交线网设计方法没有考虑实际城郊客流需求的特殊性,造成乘客出行时间过长的问题.构建基于milk-run和hub-spoke的设计理念,且同时考虑载客能力的城郊公交线网优化模型,并提出相应的遗传算法实现模型的求解.在所提出的方法中,能够得到hub站点的数量及具体位置、milk-run线路的结构、和车辆分配方案.不同于常规公交线路运营方式,所提出的城郊公交线网通过milk-run线路将分散的客流聚集到各线路的hub站点,从而形成大客流的规模效应,到达hub站点的大客流可以通过直达线路从hub站点到达相应的目的地,以此减少乘客总的出行时间.最后,为验证所提出的方法的有效性,将其应用到位于香港天水围的实际城郊公交线网中,并对比了优化后的公交服务和现有的公交服务水平.对比结果表明:在现有的公交车辆配置数量不变的条件下,所提出的方法,可以减少16.26%总的乘客出行时间,说明所提出的方法能够有效提高现有公交服务水平,增加乘客出行满意度,吸引更多乘客采用公交出行,减少交通拥堵. 展开更多
关键词 交通工程 城市公交 城郊公交线网优化 hub-spoke站点 milk-run线路 遗传算法
下载PDF
一种改进的局部多粒度决策理论粗糙集模型 被引量:1
9
作者 张鹏飞 李天瑞 +2 位作者 王德贤 袁钟 王国强 《模糊系统与数学》 北大核心 2022年第6期40-53,共14页
局部多粒度决策理论粗糙集要预先获取给定数据集中所有对象的信息颗粒,只需要对特定的目标概念中的对象的信息颗粒进行计算,开创了一种有用的计算范式。然而,传统的局部多粒度决策理论粗糙集在计算三个区域(正域,边界域和负域)时需要主... 局部多粒度决策理论粗糙集要预先获取给定数据集中所有对象的信息颗粒,只需要对特定的目标概念中的对象的信息颗粒进行计算,开创了一种有用的计算范式。然而,传统的局部多粒度决策理论粗糙集在计算三个区域(正域,边界域和负域)时需要主观的给定一对概率阈值(α,β)。在实际的决策应用中,该获取阈值的方法可能会造成信息丢失或判断不准确的问题。为了解决这个问题,这篇文章提出了一种改进的局部多粒度决策理论粗糙集模型,叫做广义的局部多粒度决策理论粗糙集。该模型可以通过一个补偿系数ζ,即可自适应的获得相对应的参数α和β.这不仅减少了人为设置参数的个数,还强化了由多个粒度结构所产生损失的语义解释。 展开更多
关键词 粗糙集 局部多粒度决策理论粗糙集 自适应 补偿系数 粒计算
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部