支持等式测试的标识加密(identity-based encryption with equality test, IBEET)体制解决了传统等式测试方案中证书管理的问题,得到了广泛的关注.但现有的IBEET体制难以抵抗渗透攻击,且都是基于国外密码算法设计,不具有自主知识产权....支持等式测试的标识加密(identity-based encryption with equality test, IBEET)体制解决了传统等式测试方案中证书管理的问题,得到了广泛的关注.但现有的IBEET体制难以抵抗渗透攻击,且都是基于国外密码算法设计,不具有自主知识产权.基于此,提出一种支持等式测试并具有密码逆向防火墙的SM9标识加密方案(SM9 identity-based encryption scheme with equality test and cryptographic reverse firewalls, SM9-IBEET-CRF).该方案在用户与云服务器的上行信道间部署密码逆向防火墙(cryptographic reverse firewalls,CRF),对用户发出的信息执行重随机化以达到抵抗渗透攻击的作用.该方案拓展国密算法SM9至IBEET领域中,提升其运行效率并丰富国密算法在云计算领域的研究.给出了SM9-IBEET-CRF的形式化定义和安全模型,并在随机预言机模型中考虑2种不同的敌手将此方案在选择密文攻击下的不可区分性与单向性分别形式化地规约到BDH困难假设上.同时,该方案通过考虑第3种敌手证明CRF的部署为其带来维持功能性、保留安全性以及抵抗渗透性.实验仿真和分析结果展示了该方案的有效性.展开更多
随着物联网(Internet of things,IoT)和人工智能(artificial intelligence,AI)技术的快速发展,大量的数据被物联网设备收集.使用机器学习或深度学习等人工智能技术可以对这些数据进行训练.训练好的模型是物联网中分析网络环境、提高服...随着物联网(Internet of things,IoT)和人工智能(artificial intelligence,AI)技术的快速发展,大量的数据被物联网设备收集.使用机器学习或深度学习等人工智能技术可以对这些数据进行训练.训练好的模型是物联网中分析网络环境、提高服务质量(quality of service,QoS)的重要组成部分.然而,大多数数据提供者(物联网终端用户)不愿意将个人数据直接分享给任何第三方进行学术研究或商业分析,因为个人数据中包含私人敏感信息.因此,研究物联网中的安全与隐私保护是一个重要研究方向.联邦学习(federated learning,FL)允许多方物联网终端用户作为训练参与者将数据保存在本地,仅上传本地训练模型至参数服务器以进行聚合,通过这种方式可以保护参与者数据隐私.具体来说,FL面临的攻击主要有2种,即推理攻击和投毒攻击.为了同时抵抗推理攻击和检测投毒攻击,提出了一个全新的源匿名数据洗牌方案Re-Shuffle.提出的Re-Shuffle采用不经意传输协议实现FL中参与者模型的匿名上传,保证参数服务器只能获得参与者的原始本地模型,而不知道来自哪个参与者.此外,为了更适应IoT环境,Re-Shuffle采用了秘密共享机制,在保证梯度数据原始性的同时,解决了传统shuffle协议中参与者的退出问题.Re-Shuffle既保证了局部模型的原始性,又保证了局部模型的隐私性,从而在保护隐私的同时检查中毒攻击.最后给出了安全证明,对方案的检测效果进行了评价,并在Re-Shuffle方案下对2种投毒攻击检测方案的计算开销进行了评估.结果表明Re-Shuffle能够在可接受的开销下为毒化攻击检测方案提供隐私保护.展开更多
文摘支持等式测试的标识加密(identity-based encryption with equality test, IBEET)体制解决了传统等式测试方案中证书管理的问题,得到了广泛的关注.但现有的IBEET体制难以抵抗渗透攻击,且都是基于国外密码算法设计,不具有自主知识产权.基于此,提出一种支持等式测试并具有密码逆向防火墙的SM9标识加密方案(SM9 identity-based encryption scheme with equality test and cryptographic reverse firewalls, SM9-IBEET-CRF).该方案在用户与云服务器的上行信道间部署密码逆向防火墙(cryptographic reverse firewalls,CRF),对用户发出的信息执行重随机化以达到抵抗渗透攻击的作用.该方案拓展国密算法SM9至IBEET领域中,提升其运行效率并丰富国密算法在云计算领域的研究.给出了SM9-IBEET-CRF的形式化定义和安全模型,并在随机预言机模型中考虑2种不同的敌手将此方案在选择密文攻击下的不可区分性与单向性分别形式化地规约到BDH困难假设上.同时,该方案通过考虑第3种敌手证明CRF的部署为其带来维持功能性、保留安全性以及抵抗渗透性.实验仿真和分析结果展示了该方案的有效性.
文摘随着物联网(Internet of things,IoT)和人工智能(artificial intelligence,AI)技术的快速发展,大量的数据被物联网设备收集.使用机器学习或深度学习等人工智能技术可以对这些数据进行训练.训练好的模型是物联网中分析网络环境、提高服务质量(quality of service,QoS)的重要组成部分.然而,大多数数据提供者(物联网终端用户)不愿意将个人数据直接分享给任何第三方进行学术研究或商业分析,因为个人数据中包含私人敏感信息.因此,研究物联网中的安全与隐私保护是一个重要研究方向.联邦学习(federated learning,FL)允许多方物联网终端用户作为训练参与者将数据保存在本地,仅上传本地训练模型至参数服务器以进行聚合,通过这种方式可以保护参与者数据隐私.具体来说,FL面临的攻击主要有2种,即推理攻击和投毒攻击.为了同时抵抗推理攻击和检测投毒攻击,提出了一个全新的源匿名数据洗牌方案Re-Shuffle.提出的Re-Shuffle采用不经意传输协议实现FL中参与者模型的匿名上传,保证参数服务器只能获得参与者的原始本地模型,而不知道来自哪个参与者.此外,为了更适应IoT环境,Re-Shuffle采用了秘密共享机制,在保证梯度数据原始性的同时,解决了传统shuffle协议中参与者的退出问题.Re-Shuffle既保证了局部模型的原始性,又保证了局部模型的隐私性,从而在保护隐私的同时检查中毒攻击.最后给出了安全证明,对方案的检测效果进行了评价,并在Re-Shuffle方案下对2种投毒攻击检测方案的计算开销进行了评估.结果表明Re-Shuffle能够在可接受的开销下为毒化攻击检测方案提供隐私保护.