文摘锂离子电池的剩余使用寿命(remaining useful life,RUL)是电池健康状态的关键指标,对其进行预测具有重要的现实意义。该工作将模糊信息粒化(fuzzy information granulation,FIG)技术与时间序列密集编码器模型(timeseries dense encoder,TiDE)相结合,提出了一种对锂离子电池的RUL进行区间预测的模型。首先将锂离子电池容量退化时间序列通过FIG技术转化为粒子序列信息,以此得到模糊信息粒子的上下界序列。其次,分别对上下界序列使用TiDE模型进行训练预测,从而得到区间预测的结果。实验结果表明,与基于支持向量回归(support vector regression,SVR)和长短期记忆网络(long short term memory network,LSTM)的区间预测模型以及不使用狐狸优化算法(fox-inspired optimization algorithm,FOA)优化的TiDE模型相比,该工作提出的基于FIG技术结合TiDE模型与FOA的区间预测方法在锂离子电池RUL预测性能上具有更高的可靠性。