期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLO模型的车流量实时采集系统研究
1
作者 王金环 李宝敏 《计算机技术与发展》 2024年第9期209-214,共6页
对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车... 对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车流量信息的准确性和及时性,利用现有的计算机技术设计一种基于YOLO模型的车流量实时采集系统。该系统基于YOLO视觉检测模型,采用DeepSORT算法对检测到的目标车辆进行跟踪识别、判断车辆的运行状态、实现当前路段的车流量统计、对已记录车流量信息进行可视化展示以及数据输出等。该系统可以有效地代替传统消耗人力的死板工作,实现自动化数据收集以及道路交通情况的快速监测。该系统操作简单,交互性强,为城市的交通管理和交通规划提供准确实时的信息数据。 展开更多
关键词 目标检测 目标跟踪算法 数据处理 YOLO模型 车流量 实时采集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部