利用快速扩展随机树算法(Rapidly-exploring random tree,RRT)进行路径规划时,在狭窄复杂区域与空旷障碍区域融合环境下,存在随机性大、搜索时间长、路径曲折等问题。为此,提出了一种基于蚁群的环境分区目标偏置RRT算法。首先,采用分环...利用快速扩展随机树算法(Rapidly-exploring random tree,RRT)进行路径规划时,在狭窄复杂区域与空旷障碍区域融合环境下,存在随机性大、搜索时间长、路径曲折等问题。为此,提出了一种基于蚁群的环境分区目标偏置RRT算法。首先,采用分环境的随机概率采样并结合人工势场的目标偏向扩展策略,以提高算法收敛速度,增强算法搜索能力。其次,为解决规划路径曲折且冗余点多的问题,提出改进蚁群寻优路径,并结合跳点筛选策略及三次B样条以消除冗余点平滑最终路径。最后,改进后的算法与A*算法、目标偏向RRT算法进行了对比分析。仿真结果表明:改进后的算法节点耗费量降低了54.8%,时间平均缩短了75.88%,从而验证了算法的有效性。展开更多
基金Natural Science Foundation of Shaanxi Province(No.2019JM-286)。
文摘利用快速扩展随机树算法(Rapidly-exploring random tree,RRT)进行路径规划时,在狭窄复杂区域与空旷障碍区域融合环境下,存在随机性大、搜索时间长、路径曲折等问题。为此,提出了一种基于蚁群的环境分区目标偏置RRT算法。首先,采用分环境的随机概率采样并结合人工势场的目标偏向扩展策略,以提高算法收敛速度,增强算法搜索能力。其次,为解决规划路径曲折且冗余点多的问题,提出改进蚁群寻优路径,并结合跳点筛选策略及三次B样条以消除冗余点平滑最终路径。最后,改进后的算法与A*算法、目标偏向RRT算法进行了对比分析。仿真结果表明:改进后的算法节点耗费量降低了54.8%,时间平均缩短了75.88%,从而验证了算法的有效性。