大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题...大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.展开更多
大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同...大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.展开更多
概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模...概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.展开更多
开放集识别(Open Set Recognition,OSR)的主要目的是识别未标记数据中的新类样本,同时对已见类样本进行正确分类.现有的大多数识别方法对未标记数据的评估和伪标记信息的利用不足.本文提出一种基于主动学习的开放集图像识别方法(Open Se...开放集识别(Open Set Recognition,OSR)的主要目的是识别未标记数据中的新类样本,同时对已见类样本进行正确分类.现有的大多数识别方法对未标记数据的评估和伪标记信息的利用不足.本文提出一种基于主动学习的开放集图像识别方法(Open Set Image Recognition Method Based on Active Learning,AC-OSIR),充分利用未标记数据提升开放集识别性能.通过引入已见类别的语义知识,构建语义知识和图像特征的映射关系.对于未标记数据,利用阈值选择策略区分开放集样本和已见类样本,通过主动学习模型迭代地识别高置信度开放集样本和已见类样本,并将高置信度已见类样本添加到标记数据集中.本文在图像分类数据集CIFAR-10、TIN和LSUN,以及两个合成数据集的实验结果表明了基于主动学习的开放集图像识别方法的有效性.展开更多
流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的...流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.展开更多
随着数字金融服务业的不断发展,互联网和金融服务系统积累了海量文本数据,对金融文本中描述的金融事件自动分类是金融科技的现实需求,也是自然语言处理和机器学习领域广泛关注的方向。目前,深度学习方法已在文本分类中广泛应用,针对文...随着数字金融服务业的不断发展,互联网和金融服务系统积累了海量文本数据,对金融文本中描述的金融事件自动分类是金融科技的现实需求,也是自然语言处理和机器学习领域广泛关注的方向。目前,深度学习方法已在文本分类中广泛应用,针对文本数据中的金融事件多标签分类中存在的已标注数据缺少、已有深度学习方法消耗资源大以及现有方法未利用金融事件文本的具体特点等问题,通过采用ALBERT和TextCNN等表示工具,引入主体词注意力机制,提出了一种半监督金融事件多标签分类方法。首先,通过无监督数据增强(Unsupervised data augmentation,UDA)方法缓解标注数据量不足的问题;其次,引入了主体词注意力机制,使用ALBERT动态词向量表征方法对文本中的词进行表示;然后,利用TextCNN对文本进行综合语义表示;最后,分别采用交叉熵和KL散度度量标记数据和无标记数据的损失来训练模型。在金融文本数据集上验证了本文所提方法的有效性。展开更多
文摘大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.
文摘大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.
文摘概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.
文摘开放集识别(Open Set Recognition,OSR)的主要目的是识别未标记数据中的新类样本,同时对已见类样本进行正确分类.现有的大多数识别方法对未标记数据的评估和伪标记信息的利用不足.本文提出一种基于主动学习的开放集图像识别方法(Open Set Image Recognition Method Based on Active Learning,AC-OSIR),充分利用未标记数据提升开放集识别性能.通过引入已见类别的语义知识,构建语义知识和图像特征的映射关系.对于未标记数据,利用阈值选择策略区分开放集样本和已见类样本,通过主动学习模型迭代地识别高置信度开放集样本和已见类样本,并将高置信度已见类样本添加到标记数据集中.本文在图像分类数据集CIFAR-10、TIN和LSUN,以及两个合成数据集的实验结果表明了基于主动学习的开放集图像识别方法的有效性.
文摘流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.
文摘随着数字金融服务业的不断发展,互联网和金融服务系统积累了海量文本数据,对金融文本中描述的金融事件自动分类是金融科技的现实需求,也是自然语言处理和机器学习领域广泛关注的方向。目前,深度学习方法已在文本分类中广泛应用,针对文本数据中的金融事件多标签分类中存在的已标注数据缺少、已有深度学习方法消耗资源大以及现有方法未利用金融事件文本的具体特点等问题,通过采用ALBERT和TextCNN等表示工具,引入主体词注意力机制,提出了一种半监督金融事件多标签分类方法。首先,通过无监督数据增强(Unsupervised data augmentation,UDA)方法缓解标注数据量不足的问题;其次,引入了主体词注意力机制,使用ALBERT动态词向量表征方法对文本中的词进行表示;然后,利用TextCNN对文本进行综合语义表示;最后,分别采用交叉熵和KL散度度量标记数据和无标记数据的损失来训练模型。在金融文本数据集上验证了本文所提方法的有效性。