针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-...针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。展开更多
为解决在光线昏暗、声音与视觉噪声干扰等复杂条件下,单模态鱼类行为识别准确率和召回率低的问题,提出了基于声音和视觉特征多级融合的鱼类行为识别模型U-FusionNet-ResNet50+SENet,该方法采用ResNet50模型提取视觉模态特征,通过MFCC+Re...为解决在光线昏暗、声音与视觉噪声干扰等复杂条件下,单模态鱼类行为识别准确率和召回率低的问题,提出了基于声音和视觉特征多级融合的鱼类行为识别模型U-FusionNet-ResNet50+SENet,该方法采用ResNet50模型提取视觉模态特征,通过MFCC+RestNet50模型提取声音模态特征,并在此基础上设计一种U型融合架构,使不同维度的鱼类视觉和声音特征充分交互,在特征提取的各阶段实现特征融合,最后引入SENet构成关注通道信息特征融合网络,并通过对比试验,采用多模态鱼类行为的合成加噪试验数据验证算法的有效性。结果表明:U-FusionNet-ResNet50+SENet对鱼类行为识别准确率达到93.71%,F1值达到93.43%,召回率达到92.56%,与效果较好的已有模型Intermediate-feature-level deep model相比,召回率、F1值和准确率分别提升了2.35%、3.45%和3.48%。研究表明,所提出的U-FusionNet-ResNet50+SENet识别方法,可有效解决单模态鱼类行为识别准确率低的问题,提升了鱼类行为识别的整体效果,可以有效识别复杂条件下鱼类的游泳、摄食等行为,为真实生产条件下的鱼类行为识别研究提供了新思路和新方法。展开更多
文摘针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。
文摘为解决在光线昏暗、声音与视觉噪声干扰等复杂条件下,单模态鱼类行为识别准确率和召回率低的问题,提出了基于声音和视觉特征多级融合的鱼类行为识别模型U-FusionNet-ResNet50+SENet,该方法采用ResNet50模型提取视觉模态特征,通过MFCC+RestNet50模型提取声音模态特征,并在此基础上设计一种U型融合架构,使不同维度的鱼类视觉和声音特征充分交互,在特征提取的各阶段实现特征融合,最后引入SENet构成关注通道信息特征融合网络,并通过对比试验,采用多模态鱼类行为的合成加噪试验数据验证算法的有效性。结果表明:U-FusionNet-ResNet50+SENet对鱼类行为识别准确率达到93.71%,F1值达到93.43%,召回率达到92.56%,与效果较好的已有模型Intermediate-feature-level deep model相比,召回率、F1值和准确率分别提升了2.35%、3.45%和3.48%。研究表明,所提出的U-FusionNet-ResNet50+SENet识别方法,可有效解决单模态鱼类行为识别准确率低的问题,提升了鱼类行为识别的整体效果,可以有效识别复杂条件下鱼类的游泳、摄食等行为,为真实生产条件下的鱼类行为识别研究提供了新思路和新方法。