在移动边缘计算的物联网(Mobile Edge Computing-enabled Internet of Things Networks,IoT-MEC)中,物联终端的高移动性、服务请求的随机到达性以及网络流量的实时变化,导致原有应用场景下的资源配置与服务部署不再完全匹配。如何有效...在移动边缘计算的物联网(Mobile Edge Computing-enabled Internet of Things Networks,IoT-MEC)中,物联终端的高移动性、服务请求的随机到达性以及网络流量的实时变化,导致原有应用场景下的资源配置与服务部署不再完全匹配。如何有效利用网络提供的资源以实现服务功能链(Service Function Chain,SFC)的实时部署和重构是一个重要的挑战。针对用户的高移动性和网络流量的实时变化造成的SFC性能需求和已分配资源不匹配的问题,提出IoT-MEC网络中基于用户移动和资源需求预测的SFC重构策略。建立以SFC的端到端时延和重构成本最小化为目标的整数线性规划模型;设计基于注意力机制的Encoder-Decoder移动用户轨迹预测模型和基于长短期记忆(Long Short-Term Memory,LSTM)网络的虚拟网络功能(Virtual Network Function,VNF)实例资源需求预测模型,分别准确预测用户移动轨迹和节点负载;基于预测结果提出SFC主动重构(Predict-based SFC Active Reconfiguration,PSAR)启发式算法,确保在服务质量(Quality of Service,QoS)下降之前,提前完成VNF迁移和路由更新,实现SFC的主动重构和无缝迁移,保证网络的一致性高质量服务。仿真结果表明,所提算法有效降低了SFC端到端时延和重构成本。展开更多
文摘在移动边缘计算的物联网(Mobile Edge Computing-enabled Internet of Things Networks,IoT-MEC)中,物联终端的高移动性、服务请求的随机到达性以及网络流量的实时变化,导致原有应用场景下的资源配置与服务部署不再完全匹配。如何有效利用网络提供的资源以实现服务功能链(Service Function Chain,SFC)的实时部署和重构是一个重要的挑战。针对用户的高移动性和网络流量的实时变化造成的SFC性能需求和已分配资源不匹配的问题,提出IoT-MEC网络中基于用户移动和资源需求预测的SFC重构策略。建立以SFC的端到端时延和重构成本最小化为目标的整数线性规划模型;设计基于注意力机制的Encoder-Decoder移动用户轨迹预测模型和基于长短期记忆(Long Short-Term Memory,LSTM)网络的虚拟网络功能(Virtual Network Function,VNF)实例资源需求预测模型,分别准确预测用户移动轨迹和节点负载;基于预测结果提出SFC主动重构(Predict-based SFC Active Reconfiguration,PSAR)启发式算法,确保在服务质量(Quality of Service,QoS)下降之前,提前完成VNF迁移和路由更新,实现SFC的主动重构和无缝迁移,保证网络的一致性高质量服务。仿真结果表明,所提算法有效降低了SFC端到端时延和重构成本。