通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和...通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和高精度感知的研究重点。从ISAC技术趋势、波形设计重要性、应用场景和发展现状四方面进行了简要介绍,对以通信为主的波形设计、以感知为主的波形设计和波形复用设计进行了分析总结,阐述了联合波形设计的一体化性能边界以及潜在的一体化波形新型设计方式;并对ISAC波形设计的发展方向进行展望。展开更多
近年来,通信技术的持续演进导致通信网络的能耗显著增加。随着人工智能(AI,artificial intelligence)技术与算法在通信网络中的广泛应用和深度部署,未来6G智能通信网络架构和技术演进将对通信网络的节能减排带来更为严峻的挑战。基于边...近年来,通信技术的持续演进导致通信网络的能耗显著增加。随着人工智能(AI,artificial intelligence)技术与算法在通信网络中的广泛应用和深度部署,未来6G智能通信网络架构和技术演进将对通信网络的节能减排带来更为严峻的挑战。基于边缘计算和分布式联邦学习的联邦边缘智能(FEI,federated edge intelligence)网络已被普遍认为是实现6G网络内生智能的关键路径之一。然而,如何评估和优化联邦边缘智能网络的综合碳排放量仍然是一大难题。为解决该问题,首先,提出了一种联邦边缘智能网络碳排放评估框架和方法。其次,基于该评估框架和方法提出3种联邦边缘智能网络碳排放优化方案,包括动态能量交易(DET,dynamic energy trading)、动态任务分配(DTA,dynamic task allocation)和动态能量交易与任务分配(DETA,dynamic energy trading and task allocation)。最后,通过自行搭建的真实硬件平台,并利用真实世界的碳强度数据集进行联邦边缘智能网络生命周期碳排放仿真。实验结果表明,3种优化方案均能在不同场景和约束条件下显著减少联邦边缘智能网络的碳排放,为下一代智能通信网络的可持续发展和实现绿色低碳6G网络提供了依据。展开更多
氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一...氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法.首先,针对烧结过程热状态参数缺失的问题,建立烧结料层最高温度分布模型,实现基于料层温度分布特征的FeO含量等级划分;其次,针对烧结过程参数波动频繁的问题,提出基于核函数高维映射的多尺度数据配准方法,有效抑制离群点的影响,提升建模数据的质量;最后,针对烧结过程数据驱动模型缺乏机理认知致使模型预测精度不高的问题,将过程数据中提取得到的FeO含量等级知识与AW-ESN (Adaptive weight echo state network)结合,建立DK-AWESN模型,有效提升复杂工况下FeO含量的预测精度.现场工业数据试验表明,所提方法能实时准确地预测烧结过程FeO含量,为烧结过程的智能化调控提供实时有效的FeO含量反馈信息.展开更多
文摘通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和高精度感知的研究重点。从ISAC技术趋势、波形设计重要性、应用场景和发展现状四方面进行了简要介绍,对以通信为主的波形设计、以感知为主的波形设计和波形复用设计进行了分析总结,阐述了联合波形设计的一体化性能边界以及潜在的一体化波形新型设计方式;并对ISAC波形设计的发展方向进行展望。
文摘近年来,通信技术的持续演进导致通信网络的能耗显著增加。随着人工智能(AI,artificial intelligence)技术与算法在通信网络中的广泛应用和深度部署,未来6G智能通信网络架构和技术演进将对通信网络的节能减排带来更为严峻的挑战。基于边缘计算和分布式联邦学习的联邦边缘智能(FEI,federated edge intelligence)网络已被普遍认为是实现6G网络内生智能的关键路径之一。然而,如何评估和优化联邦边缘智能网络的综合碳排放量仍然是一大难题。为解决该问题,首先,提出了一种联邦边缘智能网络碳排放评估框架和方法。其次,基于该评估框架和方法提出3种联邦边缘智能网络碳排放优化方案,包括动态能量交易(DET,dynamic energy trading)、动态任务分配(DTA,dynamic task allocation)和动态能量交易与任务分配(DETA,dynamic energy trading and task allocation)。最后,通过自行搭建的真实硬件平台,并利用真实世界的碳强度数据集进行联邦边缘智能网络生命周期碳排放仿真。实验结果表明,3种优化方案均能在不同场景和约束条件下显著减少联邦边缘智能网络的碳排放,为下一代智能通信网络的可持续发展和实现绿色低碳6G网络提供了依据。
文摘氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法.首先,针对烧结过程热状态参数缺失的问题,建立烧结料层最高温度分布模型,实现基于料层温度分布特征的FeO含量等级划分;其次,针对烧结过程参数波动频繁的问题,提出基于核函数高维映射的多尺度数据配准方法,有效抑制离群点的影响,提升建模数据的质量;最后,针对烧结过程数据驱动模型缺乏机理认知致使模型预测精度不高的问题,将过程数据中提取得到的FeO含量等级知识与AW-ESN (Adaptive weight echo state network)结合,建立DK-AWESN模型,有效提升复杂工况下FeO含量的预测精度.现场工业数据试验表明,所提方法能实时准确地预测烧结过程FeO含量,为烧结过程的智能化调控提供实时有效的FeO含量反馈信息.