采用密度泛函理论平面波赝势的方法,计算了LiFeSO_4F和LiTi_(0.25)Fe_(0.75)SO_4F正极材料的电子结构。计算结果表明:当锂嵌入材料后,S、O和F的原子布居变化较小,电子主要填充在过渡金属的3d轨道,导致过渡金属被还原,成为电化学反应的...采用密度泛函理论平面波赝势的方法,计算了LiFeSO_4F和LiTi_(0.25)Fe_(0.75)SO_4F正极材料的电子结构。计算结果表明:当锂嵌入材料后,S、O和F的原子布居变化较小,电子主要填充在过渡金属的3d轨道,导致过渡金属被还原,成为电化学反应的活性中心。在嵌锂态中,锂和氧(氟)之间形成了离子键,而过渡金属(Ti和Fe)与氧(氟)之间则形成了共价键,S-O键的共价性最强。态密度的计算结果则表明:Ti和Fe均保持高自旋排列结构;LiFeSO_4F的两个自旋通道的带隙分别为2.88和2.29 e V,其导电性很差;Ti掺杂使体系的带隙消失,显著地提高了正极材料的导电性;LiTi_(0.25)Fe_(0.75)SO_4F系统中Ti-O和Ti-F键均比纯相中的Fe-O和Fe-F键的共价性更强,因此Ti掺杂材料具有更好的结构稳定性。展开更多
基金supported by the National Natural Science Foundation of China(61405170)Key Project of Education Department,Henan Province,China(14B150011)University Students Sustentation Fund of Xinyang Normal University,China(2014-DXS-136,2015-DXS-163)~~
文摘用2-溴吡啶通过乌尔曼反应修饰9-(4-苯胺基)-9-苯基芴合成了一种具有大体积空间位阻的双极性分子(PFPh DPy),这种化合物因其大的空间位阻、芴优异的双极型传输特性、共轭阻断结构以及吸电子的吡啶官能团而有望获得良好的热稳定性、稳定的无定形态、高的三线态能级和良好的双极性特征.热重分析曲线表明其失重5%的分解温度为336°C.差示扫描量热曲线显示将该化合物加热到190°C既没有熔化现象也没有结晶现象,意味着该化合物具有高的形貌稳定性.通过密度泛函理论计算,该化合物的最高占有轨道(HOMO)和最低未占有轨道(LUMO)完全分离,说明该化合物具有双极性特征,通过磷光光谱得到三线态能级为3.0 e V.紫外光谱显示该化合物不依赖于溶剂效应的三个特征吸收峰分别为276、298和308 nm.荧光光谱在二氯甲烷、乙酸乙酯、乙醇和乙腈溶剂中随着溶剂的极性增加光谱发生蓝移,其最大发射峰从390 nm转变为363 nm.另外,该化合物的结构分别通过基质辅助激光解析电离飞行时间质谱(MALDI-TOF MS)、氢核磁共振(1H NMR)和碳核磁共振(13C NMR)谱进行了结构表征.
文摘采用密度泛函理论平面波赝势的方法,计算了LiFeSO_4F和LiTi_(0.25)Fe_(0.75)SO_4F正极材料的电子结构。计算结果表明:当锂嵌入材料后,S、O和F的原子布居变化较小,电子主要填充在过渡金属的3d轨道,导致过渡金属被还原,成为电化学反应的活性中心。在嵌锂态中,锂和氧(氟)之间形成了离子键,而过渡金属(Ti和Fe)与氧(氟)之间则形成了共价键,S-O键的共价性最强。态密度的计算结果则表明:Ti和Fe均保持高自旋排列结构;LiFeSO_4F的两个自旋通道的带隙分别为2.88和2.29 e V,其导电性很差;Ti掺杂使体系的带隙消失,显著地提高了正极材料的导电性;LiTi_(0.25)Fe_(0.75)SO_4F系统中Ti-O和Ti-F键均比纯相中的Fe-O和Fe-F键的共价性更强,因此Ti掺杂材料具有更好的结构稳定性。