Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to wat...Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to water and oxygen.Despite the great research progress,the exact oxidation kinetics of Ti_(3)C_(2)T_(x)(MXene)and their final products after oxidation are not fully understood.Herein,we systematically tracked the oxidation process of few-layer Ti_(3)C_(2)T_(x) nanosheets in an aqueous solution at room temperature over several weeks.We also studied the oxidation effects on the electrocatalytic properties of Ti_(3)C_(2)T_(x) for hydrogen evolution reaction and found that the overpotential to achieve a current density of 10 mA cm^(-2)increases from 0.435 to 0.877 V after three weeks of degradation,followed by improvement to stabilized values of around 0.40 V after eight weeks.These results suggest that severely oxidized MXene could be a promising candidate for designing efficient catalysts.According to our detailed experimental characterization and theoretical calculations,unlike previous studies,black titanium oxide is formed as the final product in addition to white Ti(IV)oxide and disordered carbons after the complete oxidation of Ti_(3)C_(2)T_(x).This work presents significant advancements in better understanding of 2D Ti_(3)C_(2)T_(x)(MXene)oxidation and enhances the prospects of this material for various applications.展开更多
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi...The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.展开更多
Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System.Correlations across st...Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System.Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing,and switches between different deformation events.Horizontal principle compressive stress rotated clockwise ~180°in total during Kaoko Belt evolution,and^135° during Damara Belt evolution.At most stages,stress field variation is progressive and can be attributed to events within the Damara Orogenic System,caused by changes in relative trajectories of the interacting Rio De La Plata,Congo,and Kalahari Cratons.Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ~590 Ma,involving E-W directed shortening,progressing through different transpressional states with ~45° rotation of the stress field to strike-slip shear under NW-SE shortening at ~550-530 Ma.Damaran orogenesis evolved from collision at ~555-550 Ma with NW-SE directed shortening in common with the Kaoko Belt,and subsequently evolved through ~90°rotation of the stress field to NE-SW shortening at ~512-508 Ma.Both Kaoko and Damara orogenic fronts were operating at the same time,with all three cratons being coaxially convergent during the 550-530 Ma period;Rio De La Plata directed SE against the Congo Craton margin,and both together over-riding the Kalahari Craton margin also towards the SE.Progressive stress field rotation was punctuated by rapid and significant switches at ~530-525 Ma,~508 Ma and ~505 Ma.These three events included:(1)Culmination of main phase orogenesis in the Damara Belt,coinciding with maximum burial and peak metamorphism at 530-525 Ma.This occurred at the same time as termination of transpression and initiation of transtensional reactivation of shear zones in the Kaoko Belt.Principle compressive stress switched from NW-SE to NNW-SSE shortening in both Kaoko and Damara Belts at this time.This marks the start of Congo-Kalahari stress field overwhelming the waning Rio De La Plata-Congo stress field,and from this time forward contraction across the Damara Belt generated the stress field governing subsequent low-strain events in the Kaoko Belt.(2)A sudden switch to E-W directed shortening at ~508 Ma is interpreted as a far-field effect imposed on the Damara Orogenic System,most plausibly from arc obduction along the orogenic margin of Gondwana(Ross-Delamerian Orogen).(3)This imposed stress field established a N-S extension direction exploited by decompression melts,switch to vertical shortening,and triggered gravitational collapse and extension of the thermally weakened hot orogen core at ~505 Ma,producing an extensional metamorphic core complex across the Central Zone.展开更多
The development of laser ablation inductively coupled plasma quadrupole tandem mass spectrometry(LA-ICP-Q-MS/MS)opens new opportunities to rapidly date a variety of hydrothermal minerals.Here we present in situ Lu-Hf ...The development of laser ablation inductively coupled plasma quadrupole tandem mass spectrometry(LA-ICP-Q-MS/MS)opens new opportunities to rapidly date a variety of hydrothermal minerals.Here we present in situ Lu-Hf and Re-Os dates for hydrothermal apatite and molybdenite,respectively.We further report the first in situ Lu-Hf dates for bastnäsite,dolomite,and siderite,and assess their potential for constraining ore deposit geochronology.For method validation,we report isotope-dilution Lu-Hf dates for apatite reference material Bamble-1(1102±5 Ma)and calcite reference material ME-1(1531±7 Ma),enabling improved accuracy on matrix-matched calibration for LA-ICP-MS/MS Lu-Hf dating.The new methods are applied to the Vulcan Iron-Oxide Copper-Gold(IOCG)prospect in the Olympic Cu-Au Province of South Australia.Such deposits have been difficult to accurately date,given the general lack of reliable mineral geochronometers that are cogenetic with IOCG mineralisation.Hydrothermal apatite Lu-Hf dates and molybdenite Re-Os dates demonstrate that mineralisation at Vulcan largely occurred at ca.1.6 Ga,contemporaneous with the world class Olympic Dam deposit.Our data also indicates that the Lu-Hf system in apatite is more robust than the U-Pb system for determining the timing of primary apatite formation in an IOCG system.We further demonstrate that dolomite can retain Lu-Hf growth ages over an extended time period(>1.5 billion years),providing constraints on the timing of primary ore mineral crystallisation during brecciation and IOCG mineralisation.Finally,late Neoproterozoic(ca.589–544 Ma)and Carboniferous(ca.334±7 Ma)Lu-Hf dates were obtained for texturally late Cubearing carbonate veins,illustrating that the carbonate Lu-Hf method allows direct dating of Cu remobilisation events.This has important implications for mineral exploration as the remobilised Cu may have been transferred to younger deposits hosted in Neoproterozoic sedimentary basins overlaying the Olympic IOCG province.展开更多
Fluorite(CaF_(2))is a common hydrothermal mineral,which precipitates from fluorine-rich fluids with an exceptional capacity to transport metals and Rare Earth Elements(REEs).Hence,the ability to date fluorite has impo...Fluorite(CaF_(2))is a common hydrothermal mineral,which precipitates from fluorine-rich fluids with an exceptional capacity to transport metals and Rare Earth Elements(REEs).Hence,the ability to date fluorite has important implications for understanding the timing of metal transport in hydrothermal systems.Here we present,for the first time,fluorite Lu-Hf dates from fluorite-carbonate veins from the Olympic Cu-Au Province in South Australia.The fluorite dates were obtained in situ using the recently developed LA-ICP-MS/MS Lu-Hf dating method.A fluorite-calcite age of 1588±19 Ma was obtained for the Torrens Dam prospect,consistent with the timing of the formation of the nearby Olympic Dam iron-oxide copper gold Breccia Complex.Veins in the overlying Neoproterozoic successions were dated at 502±14 Ma,indicating a temporal link between Cu-sulphide remobilisation and the Delamerian Orogeny.Additionally,we present a multi-session reproducible date for magmatic fluorite from a monzogranite in the Pilbara Craton(Lu-Hf age of 2866±19 Ma).This age is consistent with a garnet Lu-Hf age from the same sample(2850±12 Ma)and holds potential to be developed into a secondary reference material for future fluorite Lu-Hf dating.展开更多
As is recognized widely, tool wear is a major problem in the machining of difficult-to-cut titanium alloys. Therefore, it is of significant interest and importance to understand and determine quantitatively and qualit...As is recognized widely, tool wear is a major problem in the machining of difficult-to-cut titanium alloys. Therefore, it is of significant interest and importance to understand and determine quantitatively and qualitatively tool wear evolution and the underlying wear mechanisms. The main aim of this paper is to investigate and analyse wear, wear mechanisms and surface and chip generation of uncoated and TiAlN-coated carbide tools in a dry milling of Ti6Al4V alloys. The quantitative flank wear and roughness were measured and recorded. Optical and scanning electron microscopy (SEM) observations of the tool cutting edge, machined surface and chips were conducted. The results show that the TiAlN-coated tool exhi- bits an approximately 44% longer tool life than the uncoated tool at a cutting distance of 16 m. A more regular progressive abrasion between the flank face of the tool and the workpiece is found to be the underlying wear mechanism. The TiAlN-coated tool generates a smooth machined surface with 31% lower roughness than the uncoated tool. As is expected, both tools generate serrated chips. However, the burnt chips with blue color are noticed for the uncoated tool as the cutting continues further. The results are shown to be consistent with observation of other researchers, and further imply that coated tools with appropriate combinations of cutting parameters would be able to increase the tool life in cutting of titanium alloys.展开更多
A correlation between machining process and fatigue strength of machined components clearly exists. However, a complete picture of the knowledge on this is not readily available for practical applications. This study ...A correlation between machining process and fatigue strength of machined components clearly exists. However, a complete picture of the knowledge on this is not readily available for practical applications. This study addresses this issue by investigating the effects of machining methods on fatigue life of commonly used materials, such as titanium alloys, steel, aluminium alloys and nickel alloys from previous literature. Effects of turning, milling, grinding and different non-conventional machining processes on fatigue strength of above-mentioned materials have been investigated in detail with correlated information. It is found that the effect of materials is not significant except steel in which phase change causes volume expansion, resulting in compressive/tensile residual stresses based on the amounts of white layers. It is very complex to identify the influence of surface roughness on the fatigue strength of machined components in the presence of residual stresses. The polishing process improves the surface roughness, but removes the surface layers that contain compressive residual stresses to decrease the fatigue strength of polished specimens. The compressive and tensile residual stresses improve and reduce fatigue strength, respectively. Grinding process induces tensile residual stresses on the machined surfaces due to high temperature generation. On the other hand, milling and turning processes induce compressive residual stresses. High temperature non-conventional machining generates a network of microcracks on the surfaces in addition to tensile residual stresses to subsequently reduce fatigue strength of machined components. Embedded grits of abrasive water jet machining degrade the fatigue performance of components machined by this method.展开更多
基金supported by the Australian Research Council (DE220100521 and DP200101217)supported by Fellow research grant of National University of Mongolia (No.P2021-4197)+2 种基金the support of Griffith University internal grantssupport from King Abdullah University of Science and Technology (KAUST)through the Ibn Rushd Postdoctoral Fellowship Awardsupport from the US Office of Naval Research (ONR),Office of Naval Research Global (ONRG)under the grant N62909-23-1-2035。
文摘Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to water and oxygen.Despite the great research progress,the exact oxidation kinetics of Ti_(3)C_(2)T_(x)(MXene)and their final products after oxidation are not fully understood.Herein,we systematically tracked the oxidation process of few-layer Ti_(3)C_(2)T_(x) nanosheets in an aqueous solution at room temperature over several weeks.We also studied the oxidation effects on the electrocatalytic properties of Ti_(3)C_(2)T_(x) for hydrogen evolution reaction and found that the overpotential to achieve a current density of 10 mA cm^(-2)increases from 0.435 to 0.877 V after three weeks of degradation,followed by improvement to stabilized values of around 0.40 V after eight weeks.These results suggest that severely oxidized MXene could be a promising candidate for designing efficient catalysts.According to our detailed experimental characterization and theoretical calculations,unlike previous studies,black titanium oxide is formed as the final product in addition to white Ti(IV)oxide and disordered carbons after the complete oxidation of Ti_(3)C_(2)T_(x).This work presents significant advancements in better understanding of 2D Ti_(3)C_(2)T_(x)(MXene)oxidation and enhances the prospects of this material for various applications.
文摘The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper.
基金a largely self-funded 1TAR projectsupported by ARC grants A00103456+1 种基金DP0210178 to Prof.David GrayNSF grants EAR0440188 and EAR0738874 to Prof.David Foster
文摘Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System.Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing,and switches between different deformation events.Horizontal principle compressive stress rotated clockwise ~180°in total during Kaoko Belt evolution,and^135° during Damara Belt evolution.At most stages,stress field variation is progressive and can be attributed to events within the Damara Orogenic System,caused by changes in relative trajectories of the interacting Rio De La Plata,Congo,and Kalahari Cratons.Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ~590 Ma,involving E-W directed shortening,progressing through different transpressional states with ~45° rotation of the stress field to strike-slip shear under NW-SE shortening at ~550-530 Ma.Damaran orogenesis evolved from collision at ~555-550 Ma with NW-SE directed shortening in common with the Kaoko Belt,and subsequently evolved through ~90°rotation of the stress field to NE-SW shortening at ~512-508 Ma.Both Kaoko and Damara orogenic fronts were operating at the same time,with all three cratons being coaxially convergent during the 550-530 Ma period;Rio De La Plata directed SE against the Congo Craton margin,and both together over-riding the Kalahari Craton margin also towards the SE.Progressive stress field rotation was punctuated by rapid and significant switches at ~530-525 Ma,~508 Ma and ~505 Ma.These three events included:(1)Culmination of main phase orogenesis in the Damara Belt,coinciding with maximum burial and peak metamorphism at 530-525 Ma.This occurred at the same time as termination of transpression and initiation of transtensional reactivation of shear zones in the Kaoko Belt.Principle compressive stress switched from NW-SE to NNW-SSE shortening in both Kaoko and Damara Belts at this time.This marks the start of Congo-Kalahari stress field overwhelming the waning Rio De La Plata-Congo stress field,and from this time forward contraction across the Damara Belt generated the stress field governing subsequent low-strain events in the Kaoko Belt.(2)A sudden switch to E-W directed shortening at ~508 Ma is interpreted as a far-field effect imposed on the Damara Orogenic System,most plausibly from arc obduction along the orogenic margin of Gondwana(Ross-Delamerian Orogen).(3)This imposed stress field established a N-S extension direction exploited by decompression melts,switch to vertical shortening,and triggered gravitational collapse and extension of the thermally weakened hot orogen core at ~505 Ma,producing an extensional metamorphic core complex across the Central Zone.
基金supported by an Accelerated Discovery Initiative Grant(ADI RD02/260),entitled‘Integrated Exploration Under Deep Cover‘with joint funding from Fortescue and the Government of South AustraliaSG was further supported by an Australian Research Council Future Fellowship(FT210100906)The acquisition of isotope-dilution Lu-Hf dates was financially supported by the Mineral Exploration Cooperative Research Centre whose activities are funded by the Australian Government’s Cooperative Research Centre Program。
文摘The development of laser ablation inductively coupled plasma quadrupole tandem mass spectrometry(LA-ICP-Q-MS/MS)opens new opportunities to rapidly date a variety of hydrothermal minerals.Here we present in situ Lu-Hf and Re-Os dates for hydrothermal apatite and molybdenite,respectively.We further report the first in situ Lu-Hf dates for bastnäsite,dolomite,and siderite,and assess their potential for constraining ore deposit geochronology.For method validation,we report isotope-dilution Lu-Hf dates for apatite reference material Bamble-1(1102±5 Ma)and calcite reference material ME-1(1531±7 Ma),enabling improved accuracy on matrix-matched calibration for LA-ICP-MS/MS Lu-Hf dating.The new methods are applied to the Vulcan Iron-Oxide Copper-Gold(IOCG)prospect in the Olympic Cu-Au Province of South Australia.Such deposits have been difficult to accurately date,given the general lack of reliable mineral geochronometers that are cogenetic with IOCG mineralisation.Hydrothermal apatite Lu-Hf dates and molybdenite Re-Os dates demonstrate that mineralisation at Vulcan largely occurred at ca.1.6 Ga,contemporaneous with the world class Olympic Dam deposit.Our data also indicates that the Lu-Hf system in apatite is more robust than the U-Pb system for determining the timing of primary apatite formation in an IOCG system.We further demonstrate that dolomite can retain Lu-Hf growth ages over an extended time period(>1.5 billion years),providing constraints on the timing of primary ore mineral crystallisation during brecciation and IOCG mineralisation.Finally,late Neoproterozoic(ca.589–544 Ma)and Carboniferous(ca.334±7 Ma)Lu-Hf dates were obtained for texturally late Cubearing carbonate veins,illustrating that the carbonate Lu-Hf method allows direct dating of Cu remobilisation events.This has important implications for mineral exploration as the remobilised Cu may have been transferred to younger deposits hosted in Neoproterozoic sedimentary basins overlaying the Olympic IOCG province.
基金supported by research grants DP200101881 and FT210100906 from the Australian Research Council(ARC)and additionallythe Mineral Exploration Cooperative Research Centre.
文摘Fluorite(CaF_(2))is a common hydrothermal mineral,which precipitates from fluorine-rich fluids with an exceptional capacity to transport metals and Rare Earth Elements(REEs).Hence,the ability to date fluorite has important implications for understanding the timing of metal transport in hydrothermal systems.Here we present,for the first time,fluorite Lu-Hf dates from fluorite-carbonate veins from the Olympic Cu-Au Province in South Australia.The fluorite dates were obtained in situ using the recently developed LA-ICP-MS/MS Lu-Hf dating method.A fluorite-calcite age of 1588±19 Ma was obtained for the Torrens Dam prospect,consistent with the timing of the formation of the nearby Olympic Dam iron-oxide copper gold Breccia Complex.Veins in the overlying Neoproterozoic successions were dated at 502±14 Ma,indicating a temporal link between Cu-sulphide remobilisation and the Delamerian Orogeny.Additionally,we present a multi-session reproducible date for magmatic fluorite from a monzogranite in the Pilbara Craton(Lu-Hf age of 2866±19 Ma).This age is consistent with a garnet Lu-Hf age from the same sample(2850±12 Ma)and holds potential to be developed into a secondary reference material for future fluorite Lu-Hf dating.
文摘As is recognized widely, tool wear is a major problem in the machining of difficult-to-cut titanium alloys. Therefore, it is of significant interest and importance to understand and determine quantitatively and qualitatively tool wear evolution and the underlying wear mechanisms. The main aim of this paper is to investigate and analyse wear, wear mechanisms and surface and chip generation of uncoated and TiAlN-coated carbide tools in a dry milling of Ti6Al4V alloys. The quantitative flank wear and roughness were measured and recorded. Optical and scanning electron microscopy (SEM) observations of the tool cutting edge, machined surface and chips were conducted. The results show that the TiAlN-coated tool exhi- bits an approximately 44% longer tool life than the uncoated tool at a cutting distance of 16 m. A more regular progressive abrasion between the flank face of the tool and the workpiece is found to be the underlying wear mechanism. The TiAlN-coated tool generates a smooth machined surface with 31% lower roughness than the uncoated tool. As is expected, both tools generate serrated chips. However, the burnt chips with blue color are noticed for the uncoated tool as the cutting continues further. The results are shown to be consistent with observation of other researchers, and further imply that coated tools with appropriate combinations of cutting parameters would be able to increase the tool life in cutting of titanium alloys.
文摘A correlation between machining process and fatigue strength of machined components clearly exists. However, a complete picture of the knowledge on this is not readily available for practical applications. This study addresses this issue by investigating the effects of machining methods on fatigue life of commonly used materials, such as titanium alloys, steel, aluminium alloys and nickel alloys from previous literature. Effects of turning, milling, grinding and different non-conventional machining processes on fatigue strength of above-mentioned materials have been investigated in detail with correlated information. It is found that the effect of materials is not significant except steel in which phase change causes volume expansion, resulting in compressive/tensile residual stresses based on the amounts of white layers. It is very complex to identify the influence of surface roughness on the fatigue strength of machined components in the presence of residual stresses. The polishing process improves the surface roughness, but removes the surface layers that contain compressive residual stresses to decrease the fatigue strength of polished specimens. The compressive and tensile residual stresses improve and reduce fatigue strength, respectively. Grinding process induces tensile residual stresses on the machined surfaces due to high temperature generation. On the other hand, milling and turning processes induce compressive residual stresses. High temperature non-conventional machining generates a network of microcracks on the surfaces in addition to tensile residual stresses to subsequently reduce fatigue strength of machined components. Embedded grits of abrasive water jet machining degrade the fatigue performance of components machined by this method.