Vapor-cooled shield(VCS)has been considered as an effective technology to intercept heat leakage from the environment into the cryogenic tanks. This paper shows a 3 D model to investigate the temperature distribution ...Vapor-cooled shield(VCS)has been considered as an effective technology to intercept heat leakage from the environment into the cryogenic tanks. This paper shows a 3 D model to investigate the temperature distribution on VCS with H2,and also conforms to the fact of temperature uniformity assumption in literature. The shield wall thickness is analyzed for series-type VCS and parallel-type VCS to clarify the existing temperature gradient on VCS and the way it influences the insulation performance of multilayer insulation(MLI). Computational fluid dynamics(CFD) simulations are performed on different VCS types,and the simulation results showed that the temperature gradient between series-type VCS and parallel-type VCS is about 2 K with 2 mm thickness. Therefore,according to the VCS configuration design,there is no obvious influence of temperature distribution between both tseries-type VCS and parallel-type VCS. The effects of VCS position and warm boundary temperature(heat flux) on the thermal insulation performance were investigated for LH2 and LO2 tanks. The temperature profiles within the insulation material with or without VCS are compared. In addition,the contributions from the VCS to reduce the heat flux into the tank,especially to the LH2 tank,are evaluated. The simulation results indicate that the temperature gradient of VCS increases as the wall thickness decreases,the maximum temperature gradient is less than 1.5 K and can be regarded as the isothermal surface. Besides,the heat flux through MLI increases as the temperature gradient of VCS increases,but with a very small growth rate. Therefore,the influent of the VCS temperature gradient could be ignored on the adiabatic property of MLI.展开更多
The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection ...The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.展开更多
A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-s...A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.展开更多
Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and posit...Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and positioned.With the development of communication,remote-sensing,and navigation satellites,space-deployable structures have become cutting-edge research topics in space science and technology.This paper summarizes the current research status and development trend of spacedeployable structures in China,including large space mesh antennas,space solar arrays,and deployable structures and mechanisms for deep-space exploration.Critical technologies of space-deployable structures are addressed from the perspectives of deployable mechanisms,cable-membrane form-finding,dynamic analysis,reliable environmental adaptability analysis,and validation.Finally,future technology developments and trends are elucidated in the fields of mesh antennas,solar arrays,deployable mechanisms,and on-orbit adjustment,assembly,and construction.展开更多
In this research,two novel folded lattice-core sandwich cylinders were designed,manufactured,and tested.The lattice core has periodic zigzag corrugations,whose ridges and valleys are directed axially or circumferentia...In this research,two novel folded lattice-core sandwich cylinders were designed,manufactured,and tested.The lattice core has periodic zigzag corrugations,whose ridges and valleys are directed axially or circumferentially.Free vibration and axial compression experiments were performed to reveal the fundamental frequency,free vibration modes,bearing capacity,and failure mode of the cylinder.A folded lattice core effectively restricts local buckling by reducing the dimension of the local skin periodic cell,and improves the global buckling resistance by enhancing the shear stiffness of the sandwich core.The cylinders fail at the mode of material failure and possess excellent load-carrying capacity.An axially directed folded sandwich cylinder has greater load-carrying capacity,while a circumferentially directed folded sandwich cylinder has higher fundamental frequencies.These two types of folded lattices provide a selection for engineers when designing a sandwich cylinder requiring strength or vibration.This research also presents a feasible way to fabricate a large-dimensional folded structure and promote its engineering application.展开更多
Agile attitude maneuver is a basic requirement for next generation imaging spacecraft and Control Moment Gyroscope (CMG) is an effective candidate for large space station and agile spacecraft attitude control because ...Agile attitude maneuver is a basic requirement for next generation imaging spacecraft and Control Moment Gyroscope (CMG) is an effective candidate for large space station and agile spacecraft attitude control because of its torque amplification capability. This paper provides a thorough survey of Single Gimbal Control Moment Gyroscope (SGCMG) in terms of configuration,evaluation,modeling,singularity analysis and steering logic,etc. For specific space missions,CMGs are logically mounted into different particular arrays which can be chosen by the proposed evaluation methods. From the dynamic model we find a tough inverse mapping problem which suffers the inherent geometric singularity. Different techniques and theories then are applied for singularity analysis and CMG steering logics design. The pyramid CMG cluster and singular robust logics are proven to be able to enhance the agility of spacecraft. Above work forms a systematic framework of SGCMG for agile spacecraft control with lots of illustrative examples,tables and figures,and will evoke further investigation for future missions.展开更多
The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adapt...The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adaptive feedback control.An angular velocity feedback tracking algorithm is firstly developed based on the precisely known attitude dynamics of the spacecraft,and the global tracking of the control algorithm is proved based on the Lyapunov analysis.An adaptation mechanism is then designed to deal with the dynamic uncertainties of the spacecraft.Such an adaptation mechanism enables the controller to track any desired angular velocity trajectories even in the presence of uncertain inertia parameters,although it does not guarantee the inertia tensor being precisely identified.To verify the effectiveness of the proposed adaptive control policy,computer simulations on dynamic equations of a spacecraft are conducted and their results are discussed.展开更多
Aiming at the issue of sliding ratio,an internal gear pair is proposed which consists of an involute internal gear and a pinion with quadratic curve teeth.Particularly,the contact pattern is point contact and the pini...Aiming at the issue of sliding ratio,an internal gear pair is proposed which consists of an involute internal gear and a pinion with quadratic curve teeth.Particularly,the contact pattern is point contact and the pinion is generated based on an involute gear.The generation method and mathematical models of the gear pair are presented.The sliding ratio is calculated and the general calculation formulas of sliding ratios are developed.Also,the comparison between the involute gear and proposed gear is made.The adaptability of center distance and contact stress are also discussed.In addition,the gear pair was manufactured and inspected according to the exactitude solid model of the gear pair.In order to confirm this model to be effective,the efficiency experiment and the contrast experiment with the involute gear pair were performed.Furthermore,these two types of pinions were analyzed by scanning electron microscope and wear depths were measured by measuring center.The experiment results show that the efficiency of the internal gear pair is stable at a range about 97.1%to 98.6%and wear depth is less than 50%of the involute gear pair.The internal gear pair is expected to have excellent transmission performance.展开更多
The control problem of multiple-flexible-link manipulators( MFLMs) is studied in this paper.The dynamic model of MFLM is derived and separated into two-time scale by utilizing the singular perturbation technique. The ...The control problem of multiple-flexible-link manipulators( MFLMs) is studied in this paper.The dynamic model of MFLM is derived and separated into two-time scale by utilizing the singular perturbation technique. The active disturbance rejection control( ADRC) is adopted to the slow subsystem to track a desired trajectory. The proposed ADRC structure preshapes the desired trajectory by utilizing the tracking differentiator,estimates the disturbance and internal states with an extended state observer,and guarantees a robust performance by combining a feedback controller with a feedforward term. Two types of feedback controllers are designed,proportional derivative( PD) controller and nonlinear PD( NPD) controller. For the fast subsystem,a fast stabilizing control is designed according to the standard linear quadratic regulator approach. Simulations are performed to evaluate the proposed control scheme.Results show that,compared with the traditional PD controller,the ADRC structure based control scheme has smaller overshot and shorter settling time,suppresses vibration quickly,and is robust to the maneuver speed. In general,the control scheme utilizing ADRC structure and NPD feedback controller shows better performance.展开更多
Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be elimi...Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be eliminated to maintain performance.To support planar phased-array satellite antennas,a truss with diagonal cables is often applied,generally pretensioned to improve the stiffness of the antenna and maintain the integrity of the structure.A new technique is proposed herein,using the diagonal cables as the actuators for static shape adjustment of the planar phased-array satellite antenna.In this technique,the diagonal cables are not pretensioned;instead,they are slack when the deformation of the antenna is small.When using this technique,there is no need to add redundant control devices,improving the reliability and reducing the mass of the antenna.The finite element method is used to establish a structural model for the satellite antenna,then a method is introduced to select proper diagonal cables and determine the corresponding forces.Numerical simulations of a simplified two-bay satellite antenna are first carried out to validate the proposed technique.Then,a simplified 18-bay antenna is also studied,because spaceborne satellite antennas have inevitably tended to be large in recent years.The numerical simulation results show that the proposed technique can be effectively used to adjust the static shape of planar phased-array satellite antennas,achieving high precision.展开更多
Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly...Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.展开更多
According to the unattended loading requirements of the new generation launch vehicles,auto-docking technology for the first stage fill-drain connector and zero-second quick detachment technology for the second stage ...According to the unattended loading requirements of the new generation launch vehicles,auto-docking technology for the first stage fill-drain connector and zero-second quick detachment technology for the second stage fill-drain connector were proposed based on the analysis and summary of unattended loading connector technology at home and abroad.These technical solutions were verified to be reasonable and feasible by tests,and they had been successfully applied to the Long March 6 A(LM-6 A),laying a foundation for the unattended test and launch of the new generation launch vehicles.展开更多
A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency m...A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency matrixes at different work-stage of the mechanism, which is helpful to completely understand the composition and change rules of the metamorphic mechanism, are analyzed to indicate the metamorphic relationship in one working cycle. Furthermore, the static distance matrix, dynamic distance matrix and stiffness matrix of the mechanism are derived to assess the ability of the designed configuration to reveal some of the topological characteristics like compactness, dynamic sensitivity and stiffness. Using this proposed method in a space truss deployable mechanism helps the designer to evaluate its performance at the conceptual stage of design and make a rapid, reasonable selection for configuration design, which provides means for processing its type of analysis by computer.展开更多
Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock,as well as the increase of external disturbance result...Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock,as well as the increase of external disturbance resulting from the installation of the configuration and tail,while also considering the parameter uncertainties,parameter perturbations,unmodeled dynamics and coupling between channels during modeling,this paper proposes the design method for the adaptive control of sliding mode variable structure,based on the model reference. The paper firstly establishes the attitude dynamics model for the solid strap-on launch vehicle; then proposes the design method for the adaptive control of the sliding mode variable structure based on the model reference,implements the design of attitude control system for the three channels respectively,and uses the Lyapunov function to prove the global asymptotic stability; and finally verifies,through numerical simulation,that the control method proposed in this paper can guarantee the attitude stability of rockets in the primary flight phase.展开更多
Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation ...Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneousmulticore clusters.To solve it,a hybrid hierarchical parallel algorithm(HHPA)is proposed on the basis of the conventional domain decomposition algorithm(CDDA)and the parallel sparse solver.In this new algorithm,a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes,heterogeneous-core-groups(HCGs)and inside-heterogeneous-core-groups through mapping computing tasks to various hardware layers.This approach can not only achieve load balancing at different layers efficiently but can also improve the communication rate significantly through hierarchical communication.Additionally,the proposed hybrid parallel approach in this article can reduce the interface equation size and further reduce the solution time,which can make up for the shortcoming of growing communication overheads with the increase of interface equation size when employing CDDA.Moreover,the distributed sparse storage of a large amount of data is introduced to improve memory access.By solving benchmark instances on the Shenwei-Taihuzhiguang supercomputer,the results show that the proposed method can obtain higher speedup and parallel efficiency compared with CDDA and more superior extensibility of parallel partition compared with the two-level parallel computing algorithm(TPCA).展开更多
The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic anal...The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.展开更多
Loop Heat Pipe(LHP)is an efficient two-phase heat transfer device,which can be used in waste heat recovery,electronics cooling,aerospace and other fields.The wick,the core component of LHP,plays an important role in i...Loop Heat Pipe(LHP)is an efficient two-phase heat transfer device,which can be used in waste heat recovery,electronics cooling,aerospace and other fields.The wick,the core component of LHP,plays an important role in its start-up and operation.In this paper,the wick fabricated by 3D printing technology had uniform and interconnected pores.In the experiment,the position of the parallel vapor removal grooves was always fixed towards the vapor outlet.When the cylindrical wick was placed in the evaporator,the rotation angle relative to its central axis could be changed,thus changing the number and shape of the pores facing the vapor removal grooves.The wick deflection angle represented its change in spatial position relative to the fixed vapor removal grooves.The effect of the wick deflection angles on the heat transfer characteristics of the flat LHP was experimentally investigated.It was found that with the change of deflection angle,the number of pores in the evaporation-oriented zone would also change,which had a significant impact on the start-up process and heat transfer performance of LHP.When the deflection angle was 30°,LHP could start fastest at a low heat load of 20 W and operate stable at a high heat load of 180 W.展开更多
Optimal design of the tank has a significant effect on reducing the weight of a launch vehicle’s structure.In this paper,the key characteristics of a stiffened shell are identified from the design requirements,focusi...Optimal design of the tank has a significant effect on reducing the weight of a launch vehicle’s structure.In this paper,the key characteristics of a stiffened shell are identified from the design requirements,focusing on the influence of the internal pressure on the axial compression load-bearing capacity.The computing method of the ultimate load of the stiffened shell,the parametric modeling method and the surrogate modeling technique for optimal design are reviewed.An optimization process applicable to the stiffened shell was developed and applied in the optimization work for the tanks of solid-liquid bundled launch vehicle,so a better weight reduction effect could be achieved.展开更多
Due to complex assembly boundaries and working environment of the piping system in a launch vehicle,it is difficult to simulate realistic flight conditions on the ground.The lack of analysis on the complex environment...Due to complex assembly boundaries and working environment of the piping system in a launch vehicle,it is difficult to simulate realistic flight conditions on the ground.The lack of analysis on the complex environment and boundary conditions in the design process may lead to flight failures,even cause the fuel to combust and destroy the launch vehicle.This paper studies the technology and methods for dynamic simulation analysis of piping systems in launch vehicles,and established a dynamic simulation model of representative pipelines,which is expected to provide a basis for simulation analysis of piping system states in realistic flight.展开更多
The research status on the development of large segmented solid boosters is introduced,showing that the key technologies of the motor have now been acquired and meet the operational requirements of the rocket,which ma...The research status on the development of large segmented solid boosters is introduced,showing that the key technologies of the motor have now been acquired and meet the operational requirements of the rocket,which may provide a reference for subsequent development of large segmented solid booster motors and their application in space launchers with solid strap-on boosters.展开更多
文摘Vapor-cooled shield(VCS)has been considered as an effective technology to intercept heat leakage from the environment into the cryogenic tanks. This paper shows a 3 D model to investigate the temperature distribution on VCS with H2,and also conforms to the fact of temperature uniformity assumption in literature. The shield wall thickness is analyzed for series-type VCS and parallel-type VCS to clarify the existing temperature gradient on VCS and the way it influences the insulation performance of multilayer insulation(MLI). Computational fluid dynamics(CFD) simulations are performed on different VCS types,and the simulation results showed that the temperature gradient between series-type VCS and parallel-type VCS is about 2 K with 2 mm thickness. Therefore,according to the VCS configuration design,there is no obvious influence of temperature distribution between both tseries-type VCS and parallel-type VCS. The effects of VCS position and warm boundary temperature(heat flux) on the thermal insulation performance were investigated for LH2 and LO2 tanks. The temperature profiles within the insulation material with or without VCS are compared. In addition,the contributions from the VCS to reduce the heat flux into the tank,especially to the LH2 tank,are evaluated. The simulation results indicate that the temperature gradient of VCS increases as the wall thickness decreases,the maximum temperature gradient is less than 1.5 K and can be regarded as the isothermal surface. Besides,the heat flux through MLI increases as the temperature gradient of VCS increases,but with a very small growth rate. Therefore,the influent of the VCS temperature gradient could be ignored on the adiabatic property of MLI.
文摘The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.
基金The National Natural Science Foundation of China(Project No.52102436)The Natural Science Foundation of Shanghai(Project No.23ZR1462700)+3 种基金The National Key Laboratory Open Fund for Strength and Structural Integrity(Project No.ASSIKFJJ202304006)The Shanghai Aerospace Science and Technology Innovation Fund(Project No.SAST2022-031)The National Key Laboratory of Space Intelligent Control(Project No.2023-JCJQ-LB-006-14)The Shanghai Key Laboratory of Spacecraft Mechanism(Project No.YY-F805202210025)。
文摘A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.
基金financial support from the National Natural Science Foundation of China(11290154 and U20B2033)。
文摘Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and positioned.With the development of communication,remote-sensing,and navigation satellites,space-deployable structures have become cutting-edge research topics in space science and technology.This paper summarizes the current research status and development trend of spacedeployable structures in China,including large space mesh antennas,space solar arrays,and deployable structures and mechanisms for deep-space exploration.Critical technologies of space-deployable structures are addressed from the perspectives of deployable mechanisms,cable-membrane form-finding,dynamic analysis,reliable environmental adaptability analysis,and validation.Finally,future technology developments and trends are elucidated in the fields of mesh antennas,solar arrays,deployable mechanisms,and on-orbit adjustment,assembly,and construction.
基金Support from the National Natural Science Foundation of China(11672130 and 11972184)the State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-0217G03)Aerospace System Engineering Shanghai are gratefully acknowledged.
文摘In this research,two novel folded lattice-core sandwich cylinders were designed,manufactured,and tested.The lattice core has periodic zigzag corrugations,whose ridges and valleys are directed axially or circumferentially.Free vibration and axial compression experiments were performed to reveal the fundamental frequency,free vibration modes,bearing capacity,and failure mode of the cylinder.A folded lattice core effectively restricts local buckling by reducing the dimension of the local skin periodic cell,and improves the global buckling resistance by enhancing the shear stiffness of the sandwich core.The cylinders fail at the mode of material failure and possess excellent load-carrying capacity.An axially directed folded sandwich cylinder has greater load-carrying capacity,while a circumferentially directed folded sandwich cylinder has higher fundamental frequencies.These two types of folded lattices provide a selection for engineers when designing a sandwich cylinder requiring strength or vibration.This research also presents a feasible way to fabricate a large-dimensional folded structure and promote its engineering application.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61403197)the Natural Science Foundation of Jiangsu Province(Grant No.BK20140830)the Program of Shanghai Subject Chief Scientist(Grant No.14XD1423300)
文摘Agile attitude maneuver is a basic requirement for next generation imaging spacecraft and Control Moment Gyroscope (CMG) is an effective candidate for large space station and agile spacecraft attitude control because of its torque amplification capability. This paper provides a thorough survey of Single Gimbal Control Moment Gyroscope (SGCMG) in terms of configuration,evaluation,modeling,singularity analysis and steering logic,etc. For specific space missions,CMGs are logically mounted into different particular arrays which can be chosen by the proposed evaluation methods. From the dynamic model we find a tough inverse mapping problem which suffers the inherent geometric singularity. Different techniques and theories then are applied for singularity analysis and CMG steering logics design. The pyramid CMG cluster and singular robust logics are proven to be able to enhance the agility of spacecraft. Above work forms a systematic framework of SGCMG for agile spacecraft control with lots of illustrative examples,tables and figures,and will evoke further investigation for future missions.
基金Supported by the Innovation Fund of Shanghai Aerospace Science and Technology(SAST 201308)
文摘The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adaptive feedback control.An angular velocity feedback tracking algorithm is firstly developed based on the precisely known attitude dynamics of the spacecraft,and the global tracking of the control algorithm is proved based on the Lyapunov analysis.An adaptation mechanism is then designed to deal with the dynamic uncertainties of the spacecraft.Such an adaptation mechanism enables the controller to track any desired angular velocity trajectories even in the presence of uncertain inertia parameters,although it does not guarantee the inertia tensor being precisely identified.To verify the effectiveness of the proposed adaptive control policy,computer simulations on dynamic equations of a spacecraft are conducted and their results are discussed.
基金Project(51575062)supported by the National Natural Science Foundation of ChinaProject(SM2014D202)supported by the Fund of Shanghai Key Laboratory of Spacecraft Mechanism,China
文摘Aiming at the issue of sliding ratio,an internal gear pair is proposed which consists of an involute internal gear and a pinion with quadratic curve teeth.Particularly,the contact pattern is point contact and the pinion is generated based on an involute gear.The generation method and mathematical models of the gear pair are presented.The sliding ratio is calculated and the general calculation formulas of sliding ratios are developed.Also,the comparison between the involute gear and proposed gear is made.The adaptability of center distance and contact stress are also discussed.In addition,the gear pair was manufactured and inspected according to the exactitude solid model of the gear pair.In order to confirm this model to be effective,the efficiency experiment and the contrast experiment with the involute gear pair were performed.Furthermore,these two types of pinions were analyzed by scanning electron microscope and wear depths were measured by measuring center.The experiment results show that the efficiency of the internal gear pair is stable at a range about 97.1%to 98.6%and wear depth is less than 50%of the involute gear pair.The internal gear pair is expected to have excellent transmission performance.
基金Sponsored by the China Postdoctoral Science Foundation(Grant No.2014M560255)the Open Research Fund of the State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2013-ZD-05)+1 种基金the Heilongjiang Postdoctoral Found(Grant No.LBH-Z14107)the Special Foundation of Heilongjiang Postdoctoral Science(Grant No.LBH-TZ1609)
文摘The control problem of multiple-flexible-link manipulators( MFLMs) is studied in this paper.The dynamic model of MFLM is derived and separated into two-time scale by utilizing the singular perturbation technique. The active disturbance rejection control( ADRC) is adopted to the slow subsystem to track a desired trajectory. The proposed ADRC structure preshapes the desired trajectory by utilizing the tracking differentiator,estimates the disturbance and internal states with an extended state observer,and guarantees a robust performance by combining a feedback controller with a feedforward term. Two types of feedback controllers are designed,proportional derivative( PD) controller and nonlinear PD( NPD) controller. For the fast subsystem,a fast stabilizing control is designed according to the standard linear quadratic regulator approach. Simulations are performed to evaluate the proposed control scheme.Results show that,compared with the traditional PD controller,the ADRC structure based control scheme has smaller overshot and shorter settling time,suppresses vibration quickly,and is robust to the maneuver speed. In general,the control scheme utilizing ADRC structure and NPD feedback controller shows better performance.
基金the National Natural Science Foundation of China(Grant 11772187)the research project of the Key Laboratory of Infrared System Detection and Imaging Technology of the Chinese Academy of Sciences(Grant CASIR201702)the Natural Science Foundation of Shanghai(Grant 16ZRi436200).
文摘Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be eliminated to maintain performance.To support planar phased-array satellite antennas,a truss with diagonal cables is often applied,generally pretensioned to improve the stiffness of the antenna and maintain the integrity of the structure.A new technique is proposed herein,using the diagonal cables as the actuators for static shape adjustment of the planar phased-array satellite antenna.In this technique,the diagonal cables are not pretensioned;instead,they are slack when the deformation of the antenna is small.When using this technique,there is no need to add redundant control devices,improving the reliability and reducing the mass of the antenna.The finite element method is used to establish a structural model for the satellite antenna,then a method is introduced to select proper diagonal cables and determine the corresponding forces.Numerical simulations of a simplified two-bay satellite antenna are first carried out to validate the proposed technique.Then,a simplified 18-bay antenna is also studied,because spaceborne satellite antennas have inevitably tended to be large in recent years.The numerical simulation results show that the proposed technique can be effectively used to adjust the static shape of planar phased-array satellite antennas,achieving high precision.
基金supported by the National Natural Science Foundation of China(Grant No.52102436)the Fundamental Research Funds for the Central Universities(Grant No.30920021109)+3 种基金Natural Science Foundation of Jiangsu Province(BK20200496)China Postdoctoral Science Foundation(Grant No.2020M681615)the project of Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202107)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(Grant No.MCMS-E-0221Y01)。
文摘Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.
文摘According to the unattended loading requirements of the new generation launch vehicles,auto-docking technology for the first stage fill-drain connector and zero-second quick detachment technology for the second stage fill-drain connector were proposed based on the analysis and summary of unattended loading connector technology at home and abroad.These technical solutions were verified to be reasonable and feasible by tests,and they had been successfully applied to the Long March 6 A(LM-6 A),laying a foundation for the unattended test and launch of the new generation launch vehicles.
基金supported by the Science and Technology Commission of Shanghai Municipality under Grant No. 06dz22105
文摘A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency matrixes at different work-stage of the mechanism, which is helpful to completely understand the composition and change rules of the metamorphic mechanism, are analyzed to indicate the metamorphic relationship in one working cycle. Furthermore, the static distance matrix, dynamic distance matrix and stiffness matrix of the mechanism are derived to assess the ability of the designed configuration to reveal some of the topological characteristics like compactness, dynamic sensitivity and stiffness. Using this proposed method in a space truss deployable mechanism helps the designer to evaluate its performance at the conceptual stage of design and make a rapid, reasonable selection for configuration design, which provides means for processing its type of analysis by computer.
文摘Considering the increase of structural disturbance caused by large thrust misalignment and lack of synchronism after installation of the solid booster on the rock,as well as the increase of external disturbance resulting from the installation of the configuration and tail,while also considering the parameter uncertainties,parameter perturbations,unmodeled dynamics and coupling between channels during modeling,this paper proposes the design method for the adaptive control of sliding mode variable structure,based on the model reference. The paper firstly establishes the attitude dynamics model for the solid strap-on launch vehicle; then proposes the design method for the adaptive control of the sliding mode variable structure based on the model reference,implements the design of attitude control system for the three channels respectively,and uses the Lyapunov function to prove the global asymptotic stability; and finally verifies,through numerical simulation,that the control method proposed in this paper can guarantee the attitude stability of rockets in the primary flight phase.
基金supported by the National Natural Science Foundation of China (Grant No.11772192).
文摘Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays.Nevertheless,parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneousmulticore clusters.To solve it,a hybrid hierarchical parallel algorithm(HHPA)is proposed on the basis of the conventional domain decomposition algorithm(CDDA)and the parallel sparse solver.In this new algorithm,a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes,heterogeneous-core-groups(HCGs)and inside-heterogeneous-core-groups through mapping computing tasks to various hardware layers.This approach can not only achieve load balancing at different layers efficiently but can also improve the communication rate significantly through hierarchical communication.Additionally,the proposed hybrid parallel approach in this article can reduce the interface equation size and further reduce the solution time,which can make up for the shortcoming of growing communication overheads with the increase of interface equation size when employing CDDA.Moreover,the distributed sparse storage of a large amount of data is introduced to improve memory access.By solving benchmark instances on the Shenwei-Taihuzhiguang supercomputer,the results show that the proposed method can obtain higher speedup and parallel efficiency compared with CDDA and more superior extensibility of parallel partition compared with the two-level parallel computing algorithm(TPCA).
基金supported by the National Natural Science Foundation of China(Grant No.11772192).
文摘The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.
文摘Loop Heat Pipe(LHP)is an efficient two-phase heat transfer device,which can be used in waste heat recovery,electronics cooling,aerospace and other fields.The wick,the core component of LHP,plays an important role in its start-up and operation.In this paper,the wick fabricated by 3D printing technology had uniform and interconnected pores.In the experiment,the position of the parallel vapor removal grooves was always fixed towards the vapor outlet.When the cylindrical wick was placed in the evaporator,the rotation angle relative to its central axis could be changed,thus changing the number and shape of the pores facing the vapor removal grooves.The wick deflection angle represented its change in spatial position relative to the fixed vapor removal grooves.The effect of the wick deflection angles on the heat transfer characteristics of the flat LHP was experimentally investigated.It was found that with the change of deflection angle,the number of pores in the evaporation-oriented zone would also change,which had a significant impact on the start-up process and heat transfer performance of LHP.When the deflection angle was 30°,LHP could start fastest at a low heat load of 20 W and operate stable at a high heat load of 180 W.
文摘Optimal design of the tank has a significant effect on reducing the weight of a launch vehicle’s structure.In this paper,the key characteristics of a stiffened shell are identified from the design requirements,focusing on the influence of the internal pressure on the axial compression load-bearing capacity.The computing method of the ultimate load of the stiffened shell,the parametric modeling method and the surrogate modeling technique for optimal design are reviewed.An optimization process applicable to the stiffened shell was developed and applied in the optimization work for the tanks of solid-liquid bundled launch vehicle,so a better weight reduction effect could be achieved.
文摘Due to complex assembly boundaries and working environment of the piping system in a launch vehicle,it is difficult to simulate realistic flight conditions on the ground.The lack of analysis on the complex environment and boundary conditions in the design process may lead to flight failures,even cause the fuel to combust and destroy the launch vehicle.This paper studies the technology and methods for dynamic simulation analysis of piping systems in launch vehicles,and established a dynamic simulation model of representative pipelines,which is expected to provide a basis for simulation analysis of piping system states in realistic flight.
文摘The research status on the development of large segmented solid boosters is introduced,showing that the key technologies of the motor have now been acquired and meet the operational requirements of the rocket,which may provide a reference for subsequent development of large segmented solid booster motors and their application in space launchers with solid strap-on boosters.