Twenty-four rice genotypes were examined to assess genetic variability,heritability,and correlations for seven-grain quality traits,eight nutritional elements,and protein.ANOVA revealed significant differences for the ...Twenty-four rice genotypes were examined to assess genetic variability,heritability,and correlations for seven-grain quality traits,eight nutritional elements,and protein.ANOVA revealed significant differences for the quality traits studied.For every trait under study,the phenotypic coefficient of variation was higher than the correspon-dence genotypic coefficient of variation.Heritability in a broad sense varied from 29.75%for grain length to 98.31%for the elongation trait.Hulling percentage recovery had a highly significant positive correlation with milling and head rice percentage.Consequently,milling percentage had a highly positive correlation with head rice percentage.In amylose percentage,all the genotypes belonged to low amylose except the Hassawi-1 variety,which had intermediate amylose content.Mineral nutrition contents of magnesium(Mg),sodium(Na),potas-sium(K),calcium(Ca),copper(Cu),manganese(Mn),zinc(Zn),iron(Fe),or protein percentage gave different variations for 24 rice genotypes under all the nutritional elements.Among the 24 genotypes,ten rice genotypes–HighNutrient-1,HighNutrient-2,HighNutrient-9,HighNutrient-8,HighNutrient-3,Hassawi-2,HighNutrient-7,HighNutrient-6,Hassawi-1,and HighNutrient-4–had the highest heist value for all nutritional and protein con-tents,and could be used as a donor to improving new varieties.There was a positive and significant correlation between magnesium Mg,K,Zn and Fe.Consequently,K had a positive correlation with zinc Zn,Fe,and protein percentage.Clustering analysis was divided into two groups:thefirst group included all genotypes rich in nutri-ents,while the remaining genotypes with low nutritional content were included in the second group.展开更多
Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed ...Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed to assess the optimal concentrations of paclobutrazol(PBZ)as a treatment for rice grains(cv.Sakha 108)to control bakanae disease,also evaluating its impact on grain germination,seedling growth parameters as well as disease index.Paclobutrazol concentrations had no significant impact on seed germination,regardless of whether the seeds were incubated with Fusarium fujikuroi or not.Application of PBZ,either alone or in combination with fungal pathogens,negatively impacted the rice seedlings’height.Paclobutrazol at 25,50 and 100 mg/L,combined with the fungal pathogen positively impacted root length.Paclobutrazol at 3 and 6 mg/L mitigated the adverse impact on chlorophyll pigments content in infected seedlings.The highest proline contents were achieved by 100 mg/L PBZ alone or in combination with fungal pathogens.It has been observed that the application of PBZ,either alone or in combination with a fungal pathogen,leads to the enhancement of catalase,peroxidase,and polyphenol oxidase activities.The median lethal concentration of PBZ was 0.874 mg/L;applying low concentrations of paclobutrazol effectively increased the percentage of fungal growth suppression.Application of PBZ,at higher concentrations(50 and 100 mg/L),decreased infection percentage and disease severity index(DSI)significantly.These findings suggest that PBZ can be an effective treatment for controlling bakanae disease and enhancing resistance in rice plants.展开更多
Monogenic lines,which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method.The results under blast nursery revealed that 9 genes from 23 genes were suscepti...Monogenic lines,which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method.The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations(Sakha,Gemmeza,and Zarzoura in Egypt);Pia,Pik,Pik-p,Piz-t,Pita,Pi b,Pi,Pi 19 and Pi 20.While,the genes Pii,Pik-s,Pik-h,Pi z,Piz-5,Pi sh,Pi 3,Pi 1,Pi 5,Pi 7,Pi 9,Pi 12,Pikm and Pita-2 were highly resistant at the same locations.Clustering analysis confirmed the results,which divided into two groups;the first one included all the susceptible genes,while the second one included the resistance genes.In the greenhouse test,the reaction pattern of five races produced 100%resistance under artificial inoculation with eight genes showing complete resistance to all isolates.The completely resistant genes:Pii,Pik-s,Piz,Piz-5(=bi2)(t),Pita(=Pi4)(t),Pita,Pi b and Pi1 as well as clustering analysis confirmed the results.In the F1 crosses,the results showed all the 25 crosses were resistant for leaf blast disease under field conditions.While,the results in F2 population showed seven crosses with segregation ratio of 15(R):1(S),two cross gave segregated ratio of 3 R:1 S and one gave 13:3.For the identification of blast resistance genes in the parental lines,the marker K3959,linked to Pik-s gene and the variety IRBLKS-F5 carry this gene,which was from the monogenic line.The results showed that four genotypes;Sakha 105,Sakha 103,Sakha 106 and IRBLKS-F5 were carrying Pik-s gene,while was absent in the Sakha 101,Sakha 104,IRBL5-M,IRBL9-W,IRBLTACP1 and IRBL9-W(R)genotypes.As for Pi 5 gene,the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes.In addition,Pita-Pita-2 gene was found in the three Egyptian genotypes(Sakha 105,Sakha 101 and Sakha 104)plus IRBLTACP1 monogenetic.In F2 generation,six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes.However,the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies.These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.展开更多
Lablab purpureus (L.) Sweet is a multipurpose legume that combines use as human food and animal feed in addition to serving as a cover crop for soil conservation. In this work, molecular diversity in Lablab purpureus ...Lablab purpureus (L.) Sweet is a multipurpose legume that combines use as human food and animal feed in addition to serving as a cover crop for soil conservation. In this work, molecular diversity in Lablab purpureus was assessed using amplified fragment length polymorphism markers on fifty Kenyan lablab accessions obtained from farmers’ fields and the Kenya National gene bank. One hundred and eighty polymorphic bands were revealed using fifteen selective primer pairs. The overall mean expected heterozygosity (He) for the five populations was 0.189. Estimates of components of molecular variance revealed that most of the genetic variation resided within populations (99%) and only 1% variance was among the populations, while Principal Coordinate Analysis showed an overlap between accessions from different geographic origins. The UPGMA cluster analysis generated from the distance matrix of the 50 assayed accessions, revealed low diversity among most of the accessions. The low diversity observed may be due to the narrow genetic base for breeding stocks, and extensive exchange of germplasm among smallholder farmers across the country. Results obtained from this study are discussed in light of the need to enhance the genetic management and improvement of this multipurpose crop species.展开更多
Xanthomonas oryzae pv.oryzae(Xoo)is a widespread pathogen causing bacterial leaf blight(BLB)disease,devastating rice productivity in many cultivated areas of Thailand.A specific and simple method for Xoo detection is ...Xanthomonas oryzae pv.oryzae(Xoo)is a widespread pathogen causing bacterial leaf blight(BLB)disease,devastating rice productivity in many cultivated areas of Thailand.A specific and simple method for Xoo detection is required to improve surveillance of disease transmission and outbreak.This study developed a recombinase polymerase amplification(RPA)assay assisted with CRISPR-cas12a assay(RAC)for Xoo detection from bacterial cell suspension of infected rice samples without DNA extraction.The efficiency of the RAC system for Xoo detection using either Xoo80 or Xoo4009 locus was optimized to amplify and determine the sensitivity and specificity using a Xoo DNA template from bacterial cell suspension of infected rice samples without DNA extraction.The RAC system using the Xoo4009 locus gave a higher specificity than Xoo80 locus,because only Xoo species was amplified positive RPA product with fluorescence signal by cas12a digestion,which indicated no cross reactivity.Optimal RAC using the Xoo4009 locus enabled diagnosis of Xoo presence from both plant extracted samples of Xoo artificially inoculated rice leaves within 3 d post-inoculation without symptomatic BLB appearance,and Xoo naturally infected rice.Findings exhibited that RAC using the Xoo4009 locus offered sensitivity,specificity and simplicity for Xoo detection,with low intensities of Xoo-DNA(1×10^(3) copies/μL)and Xoo-cell(2.5×10^(3) cfu/mL).This developed RAC system showed significantly potential for Xoo detection at point-of-care application for early signs of BLB disease outbreak in rice fields.展开更多
基金supported and funded by Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia,grant number(Grant A410).
文摘Twenty-four rice genotypes were examined to assess genetic variability,heritability,and correlations for seven-grain quality traits,eight nutritional elements,and protein.ANOVA revealed significant differences for the quality traits studied.For every trait under study,the phenotypic coefficient of variation was higher than the correspon-dence genotypic coefficient of variation.Heritability in a broad sense varied from 29.75%for grain length to 98.31%for the elongation trait.Hulling percentage recovery had a highly significant positive correlation with milling and head rice percentage.Consequently,milling percentage had a highly positive correlation with head rice percentage.In amylose percentage,all the genotypes belonged to low amylose except the Hassawi-1 variety,which had intermediate amylose content.Mineral nutrition contents of magnesium(Mg),sodium(Na),potas-sium(K),calcium(Ca),copper(Cu),manganese(Mn),zinc(Zn),iron(Fe),or protein percentage gave different variations for 24 rice genotypes under all the nutritional elements.Among the 24 genotypes,ten rice genotypes–HighNutrient-1,HighNutrient-2,HighNutrient-9,HighNutrient-8,HighNutrient-3,Hassawi-2,HighNutrient-7,HighNutrient-6,Hassawi-1,and HighNutrient-4–had the highest heist value for all nutritional and protein con-tents,and could be used as a donor to improving new varieties.There was a positive and significant correlation between magnesium Mg,K,Zn and Fe.Consequently,K had a positive correlation with zinc Zn,Fe,and protein percentage.Clustering analysis was divided into two groups:thefirst group included all genotypes rich in nutri-ents,while the remaining genotypes with low nutritional content were included in the second group.
基金supported and funded by Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(KFU241897).
文摘Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed to assess the optimal concentrations of paclobutrazol(PBZ)as a treatment for rice grains(cv.Sakha 108)to control bakanae disease,also evaluating its impact on grain germination,seedling growth parameters as well as disease index.Paclobutrazol concentrations had no significant impact on seed germination,regardless of whether the seeds were incubated with Fusarium fujikuroi or not.Application of PBZ,either alone or in combination with fungal pathogens,negatively impacted the rice seedlings’height.Paclobutrazol at 25,50 and 100 mg/L,combined with the fungal pathogen positively impacted root length.Paclobutrazol at 3 and 6 mg/L mitigated the adverse impact on chlorophyll pigments content in infected seedlings.The highest proline contents were achieved by 100 mg/L PBZ alone or in combination with fungal pathogens.It has been observed that the application of PBZ,either alone or in combination with a fungal pathogen,leads to the enhancement of catalase,peroxidase,and polyphenol oxidase activities.The median lethal concentration of PBZ was 0.874 mg/L;applying low concentrations of paclobutrazol effectively increased the percentage of fungal growth suppression.Application of PBZ,at higher concentrations(50 and 100 mg/L),decreased infection percentage and disease severity index(DSI)significantly.These findings suggest that PBZ can be an effective treatment for controlling bakanae disease and enhancing resistance in rice plants.
基金Authors extend their appreciation to Deanship of Scientific Research,King Faisal University,Saudi Arabia,for supporting this research(NA000112).
文摘Monogenic lines,which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method.The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations(Sakha,Gemmeza,and Zarzoura in Egypt);Pia,Pik,Pik-p,Piz-t,Pita,Pi b,Pi,Pi 19 and Pi 20.While,the genes Pii,Pik-s,Pik-h,Pi z,Piz-5,Pi sh,Pi 3,Pi 1,Pi 5,Pi 7,Pi 9,Pi 12,Pikm and Pita-2 were highly resistant at the same locations.Clustering analysis confirmed the results,which divided into two groups;the first one included all the susceptible genes,while the second one included the resistance genes.In the greenhouse test,the reaction pattern of five races produced 100%resistance under artificial inoculation with eight genes showing complete resistance to all isolates.The completely resistant genes:Pii,Pik-s,Piz,Piz-5(=bi2)(t),Pita(=Pi4)(t),Pita,Pi b and Pi1 as well as clustering analysis confirmed the results.In the F1 crosses,the results showed all the 25 crosses were resistant for leaf blast disease under field conditions.While,the results in F2 population showed seven crosses with segregation ratio of 15(R):1(S),two cross gave segregated ratio of 3 R:1 S and one gave 13:3.For the identification of blast resistance genes in the parental lines,the marker K3959,linked to Pik-s gene and the variety IRBLKS-F5 carry this gene,which was from the monogenic line.The results showed that four genotypes;Sakha 105,Sakha 103,Sakha 106 and IRBLKS-F5 were carrying Pik-s gene,while was absent in the Sakha 101,Sakha 104,IRBL5-M,IRBL9-W,IRBLTACP1 and IRBL9-W(R)genotypes.As for Pi 5 gene,the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes.In addition,Pita-Pita-2 gene was found in the three Egyptian genotypes(Sakha 105,Sakha 101 and Sakha 104)plus IRBLTACP1 monogenetic.In F2 generation,six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes.However,the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies.These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.
文摘Lablab purpureus (L.) Sweet is a multipurpose legume that combines use as human food and animal feed in addition to serving as a cover crop for soil conservation. In this work, molecular diversity in Lablab purpureus was assessed using amplified fragment length polymorphism markers on fifty Kenyan lablab accessions obtained from farmers’ fields and the Kenya National gene bank. One hundred and eighty polymorphic bands were revealed using fifteen selective primer pairs. The overall mean expected heterozygosity (He) for the five populations was 0.189. Estimates of components of molecular variance revealed that most of the genetic variation resided within populations (99%) and only 1% variance was among the populations, while Principal Coordinate Analysis showed an overlap between accessions from different geographic origins. The UPGMA cluster analysis generated from the distance matrix of the 50 assayed accessions, revealed low diversity among most of the accessions. The low diversity observed may be due to the narrow genetic base for breeding stocks, and extensive exchange of germplasm among smallholder farmers across the country. Results obtained from this study are discussed in light of the need to enhance the genetic management and improvement of this multipurpose crop species.
基金the Agricultural Research Development Agency(Public Organization),Thailand(Project No.PRP6205031190).
文摘Xanthomonas oryzae pv.oryzae(Xoo)is a widespread pathogen causing bacterial leaf blight(BLB)disease,devastating rice productivity in many cultivated areas of Thailand.A specific and simple method for Xoo detection is required to improve surveillance of disease transmission and outbreak.This study developed a recombinase polymerase amplification(RPA)assay assisted with CRISPR-cas12a assay(RAC)for Xoo detection from bacterial cell suspension of infected rice samples without DNA extraction.The efficiency of the RAC system for Xoo detection using either Xoo80 or Xoo4009 locus was optimized to amplify and determine the sensitivity and specificity using a Xoo DNA template from bacterial cell suspension of infected rice samples without DNA extraction.The RAC system using the Xoo4009 locus gave a higher specificity than Xoo80 locus,because only Xoo species was amplified positive RPA product with fluorescence signal by cas12a digestion,which indicated no cross reactivity.Optimal RAC using the Xoo4009 locus enabled diagnosis of Xoo presence from both plant extracted samples of Xoo artificially inoculated rice leaves within 3 d post-inoculation without symptomatic BLB appearance,and Xoo naturally infected rice.Findings exhibited that RAC using the Xoo4009 locus offered sensitivity,specificity and simplicity for Xoo detection,with low intensities of Xoo-DNA(1×10^(3) copies/μL)and Xoo-cell(2.5×10^(3) cfu/mL).This developed RAC system showed significantly potential for Xoo detection at point-of-care application for early signs of BLB disease outbreak in rice fields.