Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
The exponential growth of food demand due to the increasing global population has the potential to seriously threaten the quality and quantity of food supplies due to climate change.This study explores the utilisation...The exponential growth of food demand due to the increasing global population has the potential to seriously threaten the quality and quantity of food supplies due to climate change.This study explores the utilisation of green urban spaces for achieving food self-sufficiency by investigating the extent to which sustainable urban farms could be used to reduce the consumption of imported produce in the UK.It also examines urban farming stakeholders'perspective on how food self-sufficiency can help realise the SDGs especially SDG 2(Zero hunger)and SDG 13(Climate action).The study adopts a mixed method approach through a survey with 115 respondents and semi-structured interviews conducted with 12 respondents from 4 different urban farming stakeholder groups.The findings of this study presented a strong correlation between stakeholders who had concerns about where their food came from and the carbon footprint of imported produce.The research shows that,urban farms will no doubt play a vital role in the future of food security in our cities/communities and that the SDGs could be realised through sustainable urban farms implemented within the relevant planning regulations/policies.展开更多
Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully ...Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully utilized to their best market values.At the same time,infrastructural renewal will take place in Qatar over the next ten years,and there will be a greater demand for aggregates and other construction materials as the country suffers from the availability of good aggregates.This paper presents results obtained on the use of steel slag,gravel and gabbro(control)in HMAC(hot mix asphalt concrete)paving mixtures and road bases and sub-bases.Tests were conducted in accordance with QCS-2010(Qatar Construction Specifications)and results were compared with QCS requirements for aggregates used in these applications.Based on the data obtained in this work,steel slag and gravel aggregates have a promising potential to be used in HMAC paving mixtures on Qatar’s roads,whether in asphalt base and asphalt wearing courses or as unbound aggregates in the base and sub-base pavement structure.展开更多
Creating sustainable cities is the only way to live in a clean environment,and this problem can be solved by using bio-sourced and recycled materials.For this purpose,the authors contribute to the valuation of sheep w...Creating sustainable cities is the only way to live in a clean environment,and this problem can be solved by using bio-sourced and recycled materials.For this purpose,the authors contribute to the valuation of sheep wool waste as an eco-friendly material to be used in insulation.The paper investigates the thermal,hygrothermal,and biological aspects of sheep wool by testing a traditional treatment.The biological method of aerobic mesophilicflora has been applied.Fluorescence X was used to determine the chemical composition of the materials used.Also,thermal characterization has been conducted.The thermal conductivity is above 0.046(W·m^(-1)·K^(-1))and the thermal diffusivity is 1.56.10^(-6) m^(2)·s^(-1).Besides,the energy efficiency of using sheep wool in buildings was studied.Furthermore,its humidity behavior was evaluated in different aspects in both winter and summer.Results of biological analyses show the efficiency of the treatment by removing the majority of the microorgan-isms:the value of yeast and mildew was reduced from 38.10^(2) to 2.10^(2)(UFC·g^(-1)).In addition to that,sheep wool permits obtaining a low thermal transmittance on the scale of the walls and low cooling needs on the scale of the building with a gain of 45%and 52%,respectively.展开更多
High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instabili...High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instability, but also increases the possibility of stress corrosion cracks. Therefore, it is necessary to reduce the residual stress to an acceptable level. The crack compliance method was adopted to study the influences of various stress relief methods on residual stress patterns in 7050 aluminum alloy. The results show that 90% residual stress can be eliminated by the cold stretching(Tx51) method. And a lower level of residual stress can be achieved by the uphill quenching(Tx53) method or the cold compression(Tx52). However, there is a very steep residual stress gradient normal to exterior surfaces.展开更多
A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based o...A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.展开更多
A two-dimensional hydrodynamic model, Floodarea was applied to simulate the flood inundation area and flood depth in Manas basin, China. Two scenes of Landsat TM images were also used in this research. One image was u...A two-dimensional hydrodynamic model, Floodarea was applied to simulate the flood inundation area and flood depth in Manas basin, China. Two scenes of Landsat TM images were also used in this research. One image was used to produce the spatial distributed manning roughness to feed the model, the other one was used to delineate the actual inundated area by a modified NDWI method. The model and the manning roughness were validated by the comparison of simulated flood inundation extent and the corresponding actual inundated area obtained from Landsat image. The results show that the actual inundation extent obtained from Landsat image was 240.45 km2, and the modeled inundation area was276.15 km2. It indicates that manning roughness ranging from 0.025 to 0.833 is appropriate in the basin. In addition, the modeled flood depth varied from 0 to7.77 m. Taking land use into account, five hazard zones were identified in the study area. This study would be beneficial to flood control and disaster reduction.展开更多
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial visco...An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode II dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.展开更多
WC(27%) reinforced steel matrix composites were produced by using an electroslag melting casting technique. The microstructure of the material was characterized using scanning electron microscopy(SEM), optical mic...WC(27%) reinforced steel matrix composites were produced by using an electroslag melting casting technique. The microstructure of the material was characterized using scanning electron microscopy(SEM), optical microscopy and X-ray diffraction(XRD). Energy dispersive spectroscopy(EDS) and transmission electron (micro-)(scopy) were performed to investigate the interfacial composition between WC particle and steel matrix. The results reveal that the WC particles are partially melted into the steel substrate. At the same time, a reaction layer was detected along with the periphery of WC particle, which significantly enhances the bonding strength of the interface. A slipping wear (high stress abrasion) test was utilized to understand the wear behavior of this material. Abrasive experiment displays a better wear resistance than unreinforced steel matrix when coarse WC particles are dispersed into it. The coarse particles provide greater wear-resistance than the fine particles and operatively takes on the most applied loads. Additionally, the large particles have not been peeled during the wear process for a long time, which indicates the effect of interfacial reaction on wear behavior at the ambient temperature. A double carbide (Fe, W)3C is detected in the interface zone between particles and matrices using transmission electron microscopy.展开更多
A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are consi...A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field.展开更多
Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections, the nonlinear equations governing dynamical behavior of Tim...Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections, the nonlinear equations governing dynamical behavior of Timoshenko beams with damage on viscoelastic foundation were firstly derived. By using the Galerkin method in spatial domain, the nonlinear integro-partial differential (equations) were transformed into a set of integro-ordinary differential equations. The numerical methods in nonlinear dynamical systems, such as the phase-trajectory diagram, Poincare section and bifurcation figure, were used to solve the simplified systems of equations. It could be seen that simplified dynamical systems possess the plenty of nonlinear dynamical properties. The influence of load and material parameters on the dynamic behavior of nonlinear system were investigated in detail.展开更多
A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on th...A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.展开更多
Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning fo...Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.展开更多
Rainfall-runoff relationship in arid regions is unique and challenging to study.Studies for bridging the hydro-meteorological knowledge gap for planning,designing and managing water resources is therefore vitally impo...Rainfall-runoff relationship in arid regions is unique and challenging to study.Studies for bridging the hydro-meteorological knowledge gap for planning,designing and managing water resources is therefore vitally important.The objective of this study is to develop a method for estimating unit hydrograph at reasonably finer time resolutions(10-min and 1-h)which can be easily adaptable by practitioners at subcatchment levels,especially when the focus area is ungauged.Observed wadi-flow at 5-min interval and tipping bucket rainfall measurements at 1-min interval were obtained to cover 10 major watersheds in Oman.The deconvolution method was applied to derive the unit hydrographs(UHs)from wadi-flow and excess rainfall.Key catchment characteristics such as the watershed area,length of the main wadi and the length to the centroid of the catchment area were derived from digital elevation model(DEM)data.The whole study area was then divided into 515 sub-catchments with various shapes and sizes.A strong relationship was found between the wadi length and the length to the centroid of the catchment area(R2>0.89).This relationship was then adopted to simplify the classical Snyder method to determine UHs.Moreover,several parameters of the Snyder method were calibrated to the arid environment by matching the peak-flow,lag-time and three time-widths(75%,50%and 30%of the peak-flow)of 10-min and 1-h UHs with physical characteristics of the watersheds.All developed relationships were validated with independent rainfall and wadi-flow events.Results indicate that the calibrated parameters in these arid watersheds are quite distinct from those suggested for other regions of the world.A marked difference was found between the 10-min UHs estimated by the S-hydrograph method and the deconvolution method.Therefore,it is concluded that a method depends on natural hydro-meteorological conditions would be more practical in arid region.The proposed methodology can be used for water resources management in arid regions having similar climate and geographical settings.展开更多
This study evaluates the uncertainty involved in the determination of the flash flood guidance(FFG) of the flash flood warning system(FFWS) for a small mountainous region(FFWS_MR)in Korea. The sensitivity is evaluated...This study evaluates the uncertainty involved in the determination of the flash flood guidance(FFG) of the flash flood warning system(FFWS) for a small mountainous region(FFWS_MR)in Korea. The sensitivity is evaluated both at each step to determine the FFG and for all steps together. The results show that the relative difference of the FFG is about 50% of the current system, most of which involves the channel width. Especially, the use of some specific empirical equations to estimate the major parameters results in a considerable amount of the relative difference of the FFG. In addition, though only four basins were field-surveyed, it is found that the indirect estimation of the major parameters always introduces some amount of additional uncertainty. In conclusion, accurate estimation of the major parameters must be the most important procedure to derive an accurate FFG, among which the channel cross-section at the exit of the basin lies at the center.展开更多
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip posses...An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.展开更多
Air pollution is one of the serious problems facing the world. This is mainly due to production and consumption of fossil fuels. Sulphur dioxide (SO2) and oxides of nitrogen (NOx) emissions could affect human health a...Air pollution is one of the serious problems facing the world. This is mainly due to production and consumption of fossil fuels. Sulphur dioxide (SO2) and oxides of nitrogen (NOx) emissions could affect human health and destroy vegetation through acid deposition and cause transboundary air pollution. Currently, there are no regional ambient SO2 and NOx regulations and control measures of many developing countries including GCC countries. This paper reviewed the experiences of the past acid rain pollution problems in United States, Canada, Europe, Japan and China. In addition, the plausible control measures through application of air pollution abatement technologies, market based regulations were discussed. The study recommended that suitable and locally based measures could be adopted by GCC states to prevent future occurrence of acid rain within the region and beyond.展开更多
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through...Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.展开更多
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
文摘The exponential growth of food demand due to the increasing global population has the potential to seriously threaten the quality and quantity of food supplies due to climate change.This study explores the utilisation of green urban spaces for achieving food self-sufficiency by investigating the extent to which sustainable urban farms could be used to reduce the consumption of imported produce in the UK.It also examines urban farming stakeholders'perspective on how food self-sufficiency can help realise the SDGs especially SDG 2(Zero hunger)and SDG 13(Climate action).The study adopts a mixed method approach through a survey with 115 respondents and semi-structured interviews conducted with 12 respondents from 4 different urban farming stakeholder groups.The findings of this study presented a strong correlation between stakeholders who had concerns about where their food came from and the carbon footprint of imported produce.The research shows that,urban farms will no doubt play a vital role in the future of food security in our cities/communities and that the SDGs could be realised through sustainable urban farms implemented within the relevant planning regulations/policies.
文摘Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully utilized to their best market values.At the same time,infrastructural renewal will take place in Qatar over the next ten years,and there will be a greater demand for aggregates and other construction materials as the country suffers from the availability of good aggregates.This paper presents results obtained on the use of steel slag,gravel and gabbro(control)in HMAC(hot mix asphalt concrete)paving mixtures and road bases and sub-bases.Tests were conducted in accordance with QCS-2010(Qatar Construction Specifications)and results were compared with QCS requirements for aggregates used in these applications.Based on the data obtained in this work,steel slag and gravel aggregates have a promising potential to be used in HMAC paving mixtures on Qatar’s roads,whether in asphalt base and asphalt wearing courses or as unbound aggregates in the base and sub-base pavement structure.
文摘Creating sustainable cities is the only way to live in a clean environment,and this problem can be solved by using bio-sourced and recycled materials.For this purpose,the authors contribute to the valuation of sheep wool waste as an eco-friendly material to be used in insulation.The paper investigates the thermal,hygrothermal,and biological aspects of sheep wool by testing a traditional treatment.The biological method of aerobic mesophilicflora has been applied.Fluorescence X was used to determine the chemical composition of the materials used.Also,thermal characterization has been conducted.The thermal conductivity is above 0.046(W·m^(-1)·K^(-1))and the thermal diffusivity is 1.56.10^(-6) m^(2)·s^(-1).Besides,the energy efficiency of using sheep wool in buildings was studied.Furthermore,its humidity behavior was evaluated in different aspects in both winter and summer.Results of biological analyses show the efficiency of the treatment by removing the majority of the microorgan-isms:the value of yeast and mildew was reduced from 38.10^(2) to 2.10^(2)(UFC·g^(-1)).In addition to that,sheep wool permits obtaining a low thermal transmittance on the scale of the walls and low cooling needs on the scale of the building with a gain of 45%and 52%,respectively.
文摘High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instability, but also increases the possibility of stress corrosion cracks. Therefore, it is necessary to reduce the residual stress to an acceptable level. The crack compliance method was adopted to study the influences of various stress relief methods on residual stress patterns in 7050 aluminum alloy. The results show that 90% residual stress can be eliminated by the cold stretching(Tx51) method. And a lower level of residual stress can be achieved by the uphill quenching(Tx53) method or the cold compression(Tx52). However, there is a very steep residual stress gradient normal to exterior surfaces.
基金Funded in part by the National Natural Science Foundation of China(No.51008306)
文摘A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.
文摘A two-dimensional hydrodynamic model, Floodarea was applied to simulate the flood inundation area and flood depth in Manas basin, China. Two scenes of Landsat TM images were also used in this research. One image was used to produce the spatial distributed manning roughness to feed the model, the other one was used to delineate the actual inundated area by a modified NDWI method. The model and the manning roughness were validated by the comparison of simulated flood inundation extent and the corresponding actual inundated area obtained from Landsat image. The results show that the actual inundation extent obtained from Landsat image was 240.45 km2, and the modeled inundation area was276.15 km2. It indicates that manning roughness ranging from 0.025 to 0.833 is appropriate in the basin. In addition, the modeled flood depth varied from 0 to7.77 m. Taking land use into account, five hazard zones were identified in the study area. This study would be beneficial to flood control and disaster reduction.
基金Project supported by the Doctor Science Research Startup Foundation of Harbin Institute of Technology (No.01502485)
文摘An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode II dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.
文摘WC(27%) reinforced steel matrix composites were produced by using an electroslag melting casting technique. The microstructure of the material was characterized using scanning electron microscopy(SEM), optical microscopy and X-ray diffraction(XRD). Energy dispersive spectroscopy(EDS) and transmission electron (micro-)(scopy) were performed to investigate the interfacial composition between WC particle and steel matrix. The results reveal that the WC particles are partially melted into the steel substrate. At the same time, a reaction layer was detected along with the periphery of WC particle, which significantly enhances the bonding strength of the interface. A slipping wear (high stress abrasion) test was utilized to understand the wear behavior of this material. Abrasive experiment displays a better wear resistance than unreinforced steel matrix when coarse WC particles are dispersed into it. The coarse particles provide greater wear-resistance than the fine particles and operatively takes on the most applied loads. Additionally, the large particles have not been peeled during the wear process for a long time, which indicates the effect of interfacial reaction on wear behavior at the ambient temperature. A double carbide (Fe, W)3C is detected in the interface zone between particles and matrices using transmission electron microscopy.
基金funded by Scientific Research Deanship at University of Ha ’ il-Saudi Arabia through project number BA-2019。
文摘A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field.
文摘Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections, the nonlinear equations governing dynamical behavior of Timoshenko beams with damage on viscoelastic foundation were firstly derived. By using the Galerkin method in spatial domain, the nonlinear integro-partial differential (equations) were transformed into a set of integro-ordinary differential equations. The numerical methods in nonlinear dynamical systems, such as the phase-trajectory diagram, Poincare section and bifurcation figure, were used to solve the simplified systems of equations. It could be seen that simplified dynamical systems possess the plenty of nonlinear dynamical properties. The influence of load and material parameters on the dynamic behavior of nonlinear system were investigated in detail.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008306)
文摘A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.
基金Supported by the National Natural Science Foundation of China(11072035)
文摘Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.
文摘Rainfall-runoff relationship in arid regions is unique and challenging to study.Studies for bridging the hydro-meteorological knowledge gap for planning,designing and managing water resources is therefore vitally important.The objective of this study is to develop a method for estimating unit hydrograph at reasonably finer time resolutions(10-min and 1-h)which can be easily adaptable by practitioners at subcatchment levels,especially when the focus area is ungauged.Observed wadi-flow at 5-min interval and tipping bucket rainfall measurements at 1-min interval were obtained to cover 10 major watersheds in Oman.The deconvolution method was applied to derive the unit hydrographs(UHs)from wadi-flow and excess rainfall.Key catchment characteristics such as the watershed area,length of the main wadi and the length to the centroid of the catchment area were derived from digital elevation model(DEM)data.The whole study area was then divided into 515 sub-catchments with various shapes and sizes.A strong relationship was found between the wadi length and the length to the centroid of the catchment area(R2>0.89).This relationship was then adopted to simplify the classical Snyder method to determine UHs.Moreover,several parameters of the Snyder method were calibrated to the arid environment by matching the peak-flow,lag-time and three time-widths(75%,50%and 30%of the peak-flow)of 10-min and 1-h UHs with physical characteristics of the watersheds.All developed relationships were validated with independent rainfall and wadi-flow events.Results indicate that the calibrated parameters in these arid watersheds are quite distinct from those suggested for other regions of the world.A marked difference was found between the 10-min UHs estimated by the S-hydrograph method and the deconvolution method.Therefore,it is concluded that a method depends on natural hydro-meteorological conditions would be more practical in arid region.The proposed methodology can be used for water resources management in arid regions having similar climate and geographical settings.
基金supported by the Korea Environmental Industry & Technology Institute (KEITI) grant funded by the Ministry of Environment (Grant RE201902084)the National Institute for Disaster Prevention (NIDP) grant funded by Ministry of Public Administration and Security (NDMI-Basic-2017-16-01)
文摘This study evaluates the uncertainty involved in the determination of the flash flood guidance(FFG) of the flash flood warning system(FFWS) for a small mountainous region(FFWS_MR)in Korea. The sensitivity is evaluated both at each step to determine the FFG and for all steps together. The results show that the relative difference of the FFG is about 50% of the current system, most of which involves the channel width. Especially, the use of some specific empirical equations to estimate the major parameters results in a considerable amount of the relative difference of the FFG. In addition, though only four basins were field-surveyed, it is found that the indirect estimation of the major parameters always introduces some amount of additional uncertainty. In conclusion, accurate estimation of the major parameters must be the most important procedure to derive an accurate FFG, among which the channel cross-section at the exit of the basin lies at the center.
文摘An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.
文摘Air pollution is one of the serious problems facing the world. This is mainly due to production and consumption of fossil fuels. Sulphur dioxide (SO2) and oxides of nitrogen (NOx) emissions could affect human health and destroy vegetation through acid deposition and cause transboundary air pollution. Currently, there are no regional ambient SO2 and NOx regulations and control measures of many developing countries including GCC countries. This paper reviewed the experiences of the past acid rain pollution problems in United States, Canada, Europe, Japan and China. In addition, the plausible control measures through application of air pollution abatement technologies, market based regulations were discussed. The study recommended that suitable and locally based measures could be adopted by GCC states to prevent future occurrence of acid rain within the region and beyond.
基金Project(11102163)supported by the National Natural Science Foundation of ChinaProjects(JC20110218,JC20110260)supported by Foundation for Fundamental Research of Northwestern Polytechnical University,China
文摘Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.