Schizophrenia is a devastating mental disorder affecting 20 million people worldwide.Early diagnosis is crucial for disease management and improvement in prognosis,and diagnostic biomarkerscan serveasobjective indicat...Schizophrenia is a devastating mental disorder affecting 20 million people worldwide.Early diagnosis is crucial for disease management and improvement in prognosis,and diagnostic biomarkerscan serveasobjective indicators for the early screening of the disease.Based on the observation of diminished flush responses to niacin in patients with schizophrenia Horrobin proposed anoninvasive niacin skin flush screening for schizophrenia.展开更多
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f...AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.展开更多
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode...Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems.展开更多
In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading m...In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading modification attack(SM-attack) that may disguise the occurrence of an event as that of another event by intruding sensor communication channels. To solve the problem, we introduce non-deterministic supervisors in the paper, which associate to every observed sequence a set of possible control actions offline and choose a control action from the set randomly online to control the system. Specifically, given a bounded Petri net(PN) as the reference formalism and an SMattack, an algorithm that synthesizes a liveness-enforcing nondeterministic supervisor tolerant to the SM-attack is proposed for the first time.展开更多
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac...The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.展开更多
Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic ...Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.展开更多
We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod proj...We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.展开更多
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ...Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.展开更多
BACKGROUND Ulcerative colitis(UC)with concomitant primary sclerosing cholangitis(PSC)represents a distinct disease entity(PSC-UC).Mayo endoscopic subscore(MES)is a standard tool for assessing disease activity in UC bu...BACKGROUND Ulcerative colitis(UC)with concomitant primary sclerosing cholangitis(PSC)represents a distinct disease entity(PSC-UC).Mayo endoscopic subscore(MES)is a standard tool for assessing disease activity in UC but its relevance in PSC-UC remains unclear.AIM To assess the accuracy of MES in UC and PSC-UC patients,we performed histological scoring using Nancy histological index(NHI).METHODS MES was assessed in 30 PSC-UC and 29 UC adult patients during endoscopy.NHI and inflammation were evaluated in biopsies from the cecum,rectum,and terminal ileum.In addition,perinuclear anti-neutrophil cytoplasmic antibodies,fecal calprotectin,body mass index,and other relevant clinical characteristics were collected.RESULTS The median MES and NHI were similar for UC patients(MES grade 2 and NHI grade 2 in the rectum)but were different for PSC-UC patients(MES grade 0 and NHI grade 2 in the cecum).There was a correlation between MES and NHI for UC patients(Spearman's r=0.40,P=0.029)but not for PSC-UC patients.Histopathological examination revealed persistent microscopic inflammation in 88%of PSC-UC patients with MES grade 0(46%of all PSC-UC patients).Moreover,MES overestimated the severity of active inflammation in an additional 11%of PSCUC patients.CONCLUSION MES insufficiently identifies microscopic inflammation in PSC-UC.This indicates that histological evaluation should become a routine procedure of the diagnostic and grading system in both PSC-UC and PSC.展开更多
Web3,also known as Web 3.0,has recently been attracting increasing attention from industry and academia.Leveraging the potential of blockchain technologies,Web3 has emerged as a pivotal foundation in the realm of meta...Web3,also known as Web 3.0,has recently been attracting increasing attention from industry and academia.Leveraging the potential of blockchain technologies,Web3 has emerged as a pivotal foundation in the realm of metaverse development,which is considered by many as the next-generation Internet.Specifically,Web3 technologies such as smart contracts and protocols like non-fungible tokens(NFTs)have supported the immersive and content-rich experience of current Web3 metaverse projects.展开更多
A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets(PNs).In this paper,we propose an algorithm ...A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets(PNs).In this paper,we propose an algorithm for the enumeration of minimal siphons in PN based on problem decomposition.The proposed algorithm is an improved version of the global partitioning minimal-siphon enumeration(GPMSE)proposed by Cordone et al.(2005)in IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,which is widely used in the literature to compute minimal siphons.The experimental results show that the proposed algorithm consumes lower computational time and memory compared with GPMSE,which becomes more evident when the size of the handled net grows.展开更多
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)...Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks.展开更多
Timely information updates are critical for real-time monitoring and control applications in the Internet of Things(IoT). In this paper, we consider a multi-antenna cellular IoT for state update where a base station(B...Timely information updates are critical for real-time monitoring and control applications in the Internet of Things(IoT). In this paper, we consider a multi-antenna cellular IoT for state update where a base station(BS) collects information from randomly distributed IoT nodes through time-varying channel.Specifically, multiple IoT nodes are allowed to transmit their state update simultaneously in a spatial multiplex manner. Inspired by age of information(AoI),we introduce a novel concept of age of transmission(AoT) for the sceneries in which BS cannot obtain the generation time of the packets waiting to be transmitted. The deadline-constrained AoT-optimal scheduling problem is formulated as a restless multi-armed bandit(RMAB) problem. Firstly, we prove the indexability of the scheduling problem and derive the closed-form of the Whittle index. Then, the interference graph and complementary graph are constructed to illustrate the interference between two nodes. The complete subgraphs are detected in the complementary graph to avoid inter-node interference. Next, an AoT-optimal scheduling strategy based on the Whittle index and complete subgraph detection is proposed.Finally, numerous simulations are conducted to verify the performance of the proposed strategy.展开更多
With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of...With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of HAR by proposing an LSTM-1DCNN recognition algorithm that utilizes a single triaxial accelerometer.This algorithm comprises two branches:one branch consists of a Long and Short-Term Memory Network(LSTM),while the other parallel branch incorporates a one-dimensional Convolutional Neural Network(1DCNN).The parallel architecture of LSTM-1DCNN initially extracts spatial and temporal features from the accelerometer data separately,which are then concatenated and fed into a fully connected neural network for information fusion.In the LSTM-1DCNN architecture,the 1DCNN branch primarily focuses on extracting spatial features during convolution operations,whereas the LSTM branch mainly captures temporal features.Nine sets of accelerometer data from five publicly available HAR datasets are employed for training and evaluation purposes.The performance of the proposed LSTM-1DCNN model is compared with five other HAR algorithms including Decision Tree,Random Forest,Support Vector Machine,1DCNN,and LSTM on these five public datasets.Experimental results demonstrate that the F1-score achieved by the proposed LSTM-1DCNN ranges from 90.36%to 99.68%,with a mean value of 96.22%and standard deviation of 0.03 across all evaluated metrics on these five public datasets-outperforming other existing HAR algorithms significantly in terms of evaluation metrics used in this study.Finally the proposed LSTM-1DCNN is validated in real-world applications by collecting acceleration data of seven human activities for training and testing purposes.Subsequently,the trained HAR algorithm is deployed on Android phones to evaluate its performance.Experimental results demonstrate that the proposed LSTM-1DCNN algorithm achieves an impressive F1-score of 97.67%on our self-built dataset.In conclusion,the fusion of temporal and spatial information in the measured data contributes to the excellent HAR performance and robustness exhibited by the proposed 1DCNN-LSTM architecture.展开更多
In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical prope...In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior.In addition,a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents.The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite(CaCO_(3)) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized.Its application with a 20wt%content in sintering improves sinter productivity,reduces fuel consumption,enhances reduction index,and improves gas permeability in blast furnace by 0.45 t/(m^(2)·h),6.11 kg/t,6.17%,and 65.39 kPa·℃,respectively.The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering,which is conducive to recovering heat for secondary use.As the content of the Ca-rich iron ore increases,sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection.Based on an examination of the greater weight value of productivity with grey correlation analysis,the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0-20wt%content.Therefore,it may be used in sintering with magnetite concentrates as the major ore species.展开更多
Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious pro...Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious problem.Researchers find that the blurry boundary is mainly caused by two factors.First,the low-level features,containing boundary and structure information,may be lost in deep networks during the convolution process.Second,themodel ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area,during the backpropagation.Focusing on the factors mentioned above.Two countermeasures are proposed to mitigate the boundary blur problem.Firstly,we design a scene understanding module and scale transformmodule to build a lightweight fuse feature pyramid,which can deal with low-level feature loss effectively.Secondly,we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth value.Extensive experiments show that our method can predict the depth maps with clearer boundaries,and the performance of the depth accuracy based on NYU-Depth V2,SUN RGB-D,and iBims-1 are competitive.展开更多
The purpose of this article is to extend the theory of circulant matrix to general ideal matrix, and to construct more general NTRU cryptosystem combined with the φ-cyclic code. To understand our construction, ...The purpose of this article is to extend the theory of circulant matrix to general ideal matrix, and to construct more general NTRU cryptosystem combined with the φ-cyclic code. To understand our construction, first we discuss a more general form of the ordinary cyclic code, namely φ-cyclic code, which firstly appeared in [1] and [2], thus we give a more generalized NTRUEncrypt by replacing finite field with real number field R.展开更多
1. The connotation and characteristics of crowd intelligence The reason that human beings have evolved to such an advanced level today lies not only in the increase in individual knowledge but also in the structural p...1. The connotation and characteristics of crowd intelligence The reason that human beings have evolved to such an advanced level today lies not only in the increase in individual knowledge but also in the structural progress of crowds [1]. Given the importance of the latter, since the late 20th century, researchers have begun to explore management and calculation methods related to crowd intelligence [2], such as the multiagent system,distributed collaboration, and open-source platform.展开更多
We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide ...We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide value beyond that of constitutive model development. The developed methodology utilises Bayesian optimisation to minimise the error between experimental measurements and numerical simulations performed in LS-DYNA. We demonstrate the optimisation methodology using high hardness armour steels across three types of experiments that induce a wide range of loading conditions: ballistic penetration, rod-on-anvil, and near-field blast deformation. By utilising such a broad range of conditions for the optimisation, the resulting constitutive model parameters are generalised, i.e., applicable across the range of loading conditions encompassed the by those experiments(e.g., stress states, plastic strain magnitudes, strain rates, etc.). Model constants identified using this methodology are demonstrated to provide a generalisable model with superior predictive accuracy than those derived from conventional mechanical characterisation experiments or optimised from a single experimental condition.展开更多
Levenberg-Marquardt(LM)algorithm is applied for the optimization of the heat transfer of a batch reactor.The validity of the approach is verified through comparison with experimental results.It is found that the mathe...Levenberg-Marquardt(LM)algorithm is applied for the optimization of the heat transfer of a batch reactor.The validity of the approach is verified through comparison with experimental results.It is found that the mathematical model can properly describe the heat transfer relationships characterizing the considered system,with the error being kept within±2℃.Indeed,the difference between the actual measured values and the model calculated value curve is within±1.5℃,which is in agreement with the model assumptions and demonstrates the reliability and effectiveness of the algorithm applied to the batch reactor heat transfer model.Therefore,the present work provides a theoretical reference for the conversion of practical problems in the field of chemical production into mathematical models.展开更多
基金This study was supported by National Natural Science Foundation of China(82171544,81971251,81671329,and 81871050),Science and Technology Commission of Shanghai Municipality(19441907800,16ZR1430500,19ZR1445200,17411953100,21S31903100,2018SHZDZX01,19410710800,19411969100,19411950800)。
文摘Schizophrenia is a devastating mental disorder affecting 20 million people worldwide.Early diagnosis is crucial for disease management and improvement in prognosis,and diagnostic biomarkerscan serveasobjective indicators for the early screening of the disease.Based on the observation of diminished flush responses to niacin in patients with schizophrenia Horrobin proposed anoninvasive niacin skin flush screening for schizophrenia.
基金supported in part by the Hong Kong Polytechnic University via the project P0038447The Science and Technology Development Fund,Macao SAR(0093/2023/RIA2)The Science and Technology Development Fund,Macao SAR(0145/2023/RIA3).
文摘AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.
文摘Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems.
基金supported in part by the Public Technology Research Plan of Zhejiang Province (LGJ21F030001)the National Natural Science Foundation of China (62302448)the Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (2013E10012)。
文摘In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading modification attack(SM-attack) that may disguise the occurrence of an event as that of another event by intruding sensor communication channels. To solve the problem, we introduce non-deterministic supervisors in the paper, which associate to every observed sequence a set of possible control actions offline and choose a control action from the set randomly online to control the system. Specifically, given a bounded Petri net(PN) as the reference formalism and an SMattack, an algorithm that synthesizes a liveness-enforcing nondeterministic supervisor tolerant to the SM-attack is proposed for the first time.
基金This research work has been conducted in cooperation with members of DETSI project supported by BPI France and Pays de Loire and Auvergne Rhone Alpes.
文摘The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.
基金supported in part by the National Key Research and Development Program of China(2022YFB3305300)the National Natural Science Foundation of China(62173178).
文摘Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.
文摘We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples.
基金This research work is supported by Sichuan Science and Technology Program(Grant No.2022YFS0586)the National Key R&D Program of China(Grant No.2019YFC1509301)the National Natural Science Foundation of China(Grant No.61976046).
文摘Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation.
基金Supported by Grant Agency of the Ministry of Health of the Czech Republic,No.NV17-31538AGrant Agency of the Czech Republic No.20-16520Y and No.21-21736SMinistry of Education,Youth and Sports of the Czech Republic Project,No.LX22NPO05102.
文摘BACKGROUND Ulcerative colitis(UC)with concomitant primary sclerosing cholangitis(PSC)represents a distinct disease entity(PSC-UC).Mayo endoscopic subscore(MES)is a standard tool for assessing disease activity in UC but its relevance in PSC-UC remains unclear.AIM To assess the accuracy of MES in UC and PSC-UC patients,we performed histological scoring using Nancy histological index(NHI).METHODS MES was assessed in 30 PSC-UC and 29 UC adult patients during endoscopy.NHI and inflammation were evaluated in biopsies from the cecum,rectum,and terminal ileum.In addition,perinuclear anti-neutrophil cytoplasmic antibodies,fecal calprotectin,body mass index,and other relevant clinical characteristics were collected.RESULTS The median MES and NHI were similar for UC patients(MES grade 2 and NHI grade 2 in the rectum)but were different for PSC-UC patients(MES grade 0 and NHI grade 2 in the cecum).There was a correlation between MES and NHI for UC patients(Spearman's r=0.40,P=0.029)but not for PSC-UC patients.Histopathological examination revealed persistent microscopic inflammation in 88%of PSC-UC patients with MES grade 0(46%of all PSC-UC patients).Moreover,MES overestimated the severity of active inflammation in an additional 11%of PSCUC patients.CONCLUSION MES insufficiently identifies microscopic inflammation in PSC-UC.This indicates that histological evaluation should become a routine procedure of the diagnostic and grading system in both PSC-UC and PSC.
文摘Web3,also known as Web 3.0,has recently been attracting increasing attention from industry and academia.Leveraging the potential of blockchain technologies,Web3 has emerged as a pivotal foundation in the realm of metaverse development,which is considered by many as the next-generation Internet.Specifically,Web3 technologies such as smart contracts and protocols like non-fungible tokens(NFTs)have supported the immersive and content-rich experience of current Web3 metaverse projects.
基金supported in part by the Zhejiang Natural Science Foundation(LQ20F020009)the Zhejiang Provincial Key Laboratory of New Network Standards and Technologies(2013E10012)the Public Technology Research Plan of Zhejiang Province(LGJ21F030001)。
文摘A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets(PNs).In this paper,we propose an algorithm for the enumeration of minimal siphons in PN based on problem decomposition.The proposed algorithm is an improved version of the global partitioning minimal-siphon enumeration(GPMSE)proposed by Cordone et al.(2005)in IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,which is widely used in the literature to compute minimal siphons.The experimental results show that the proposed algorithm consumes lower computational time and memory compared with GPMSE,which becomes more evident when the size of the handled net grows.
基金This work was supported by the National Natural Science Foundation of China(No.61906006).
文摘Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks.
基金supported by the Fundamental Research Funds for the Central Universities (2020ZDPYMS26)the National Natural Science Foundation of China (62071472, 51734009)+3 种基金the Natural Science Foundation o Jiangsu Province (BK20210489, BK20200650)China Postdoctoral Science Foundation (2019M660133)the Future Network Scientific Research Fund Project (FNSRFP-2021-YB-12)the Program for “Industrial IoT and Emergency Collaboration” Innovative Research Team in CUMT (No.2020ZY002)。
文摘Timely information updates are critical for real-time monitoring and control applications in the Internet of Things(IoT). In this paper, we consider a multi-antenna cellular IoT for state update where a base station(BS) collects information from randomly distributed IoT nodes through time-varying channel.Specifically, multiple IoT nodes are allowed to transmit their state update simultaneously in a spatial multiplex manner. Inspired by age of information(AoI),we introduce a novel concept of age of transmission(AoT) for the sceneries in which BS cannot obtain the generation time of the packets waiting to be transmitted. The deadline-constrained AoT-optimal scheduling problem is formulated as a restless multi-armed bandit(RMAB) problem. Firstly, we prove the indexability of the scheduling problem and derive the closed-form of the Whittle index. Then, the interference graph and complementary graph are constructed to illustrate the interference between two nodes. The complete subgraphs are detected in the complementary graph to avoid inter-node interference. Next, an AoT-optimal scheduling strategy based on the Whittle index and complete subgraph detection is proposed.Finally, numerous simulations are conducted to verify the performance of the proposed strategy.
基金supported by the Guangxi University of Science and Technology,Liuzhou,China,sponsored by the Researchers Supporting Project(No.XiaoKeBo21Z27,The Construction of Electronic Information Team supported by Artificial Intelligence Theory and Three-dimensional Visual Technology,Yuesheng Zhao)supported by the 2022 Laboratory Fund Project of the Key Laboratory of Space-Based Integrated Information System(No.SpaceInfoNet20221120,Research on the Key Technologies of Intelligent Spatiotemporal Data Engine Based on Space-Based Information Network,Yuesheng Zhao)supported by the 2023 Guangxi University Young and Middle-Aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0352,Research on the Recognition of Psychological Abnormalities in College Students Based on the Fusion of Pulse and EEG Techniques,Yutong Luo).
文摘With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of HAR by proposing an LSTM-1DCNN recognition algorithm that utilizes a single triaxial accelerometer.This algorithm comprises two branches:one branch consists of a Long and Short-Term Memory Network(LSTM),while the other parallel branch incorporates a one-dimensional Convolutional Neural Network(1DCNN).The parallel architecture of LSTM-1DCNN initially extracts spatial and temporal features from the accelerometer data separately,which are then concatenated and fed into a fully connected neural network for information fusion.In the LSTM-1DCNN architecture,the 1DCNN branch primarily focuses on extracting spatial features during convolution operations,whereas the LSTM branch mainly captures temporal features.Nine sets of accelerometer data from five publicly available HAR datasets are employed for training and evaluation purposes.The performance of the proposed LSTM-1DCNN model is compared with five other HAR algorithms including Decision Tree,Random Forest,Support Vector Machine,1DCNN,and LSTM on these five public datasets.Experimental results demonstrate that the F1-score achieved by the proposed LSTM-1DCNN ranges from 90.36%to 99.68%,with a mean value of 96.22%and standard deviation of 0.03 across all evaluated metrics on these five public datasets-outperforming other existing HAR algorithms significantly in terms of evaluation metrics used in this study.Finally the proposed LSTM-1DCNN is validated in real-world applications by collecting acceleration data of seven human activities for training and testing purposes.Subsequently,the trained HAR algorithm is deployed on Android phones to evaluate its performance.Experimental results demonstrate that the proposed LSTM-1DCNN algorithm achieves an impressive F1-score of 97.67%on our self-built dataset.In conclusion,the fusion of temporal and spatial information in the measured data contributes to the excellent HAR performance and robustness exhibited by the proposed 1DCNN-LSTM architecture.
基金financially supported by the National Natural Science Foundation of China(No.52174291)。
文摘In order to study the sintering characteristics of Ca-rich iron ore,chemical analysis,laser diffraction,scanning electron microscopy,XRD-Rietveld method,and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior.In addition,a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents.The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite(CaCO_(3)) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized.Its application with a 20wt%content in sintering improves sinter productivity,reduces fuel consumption,enhances reduction index,and improves gas permeability in blast furnace by 0.45 t/(m^(2)·h),6.11 kg/t,6.17%,and 65.39 kPa·℃,respectively.The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering,which is conducive to recovering heat for secondary use.As the content of the Ca-rich iron ore increases,sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection.Based on an examination of the greater weight value of productivity with grey correlation analysis,the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0-20wt%content.Therefore,it may be used in sintering with magnetite concentrates as the major ore species.
基金supported in part by School Research Projects of Wuyi University (No.5041700175).
文摘Monocular depth estimation is the basic task in computer vision.Its accuracy has tremendous improvement in the decade with the development of deep learning.However,the blurry boundary in the depth map is a serious problem.Researchers find that the blurry boundary is mainly caused by two factors.First,the low-level features,containing boundary and structure information,may be lost in deep networks during the convolution process.Second,themodel ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area,during the backpropagation.Focusing on the factors mentioned above.Two countermeasures are proposed to mitigate the boundary blur problem.Firstly,we design a scene understanding module and scale transformmodule to build a lightweight fuse feature pyramid,which can deal with low-level feature loss effectively.Secondly,we propose a boundary-aware depth loss function to pay attention to the effects of the boundary’s depth value.Extensive experiments show that our method can predict the depth maps with clearer boundaries,and the performance of the depth accuracy based on NYU-Depth V2,SUN RGB-D,and iBims-1 are competitive.
文摘The purpose of this article is to extend the theory of circulant matrix to general ideal matrix, and to construct more general NTRU cryptosystem combined with the φ-cyclic code. To understand our construction, first we discuss a more general form of the ordinary cyclic code, namely φ-cyclic code, which firstly appeared in [1] and [2], thus we give a more generalized NTRUEncrypt by replacing finite field with real number field R.
文摘1. The connotation and characteristics of crowd intelligence The reason that human beings have evolved to such an advanced level today lies not only in the increase in individual knowledge but also in the structural progress of crowds [1]. Given the importance of the latter, since the late 20th century, researchers have begun to explore management and calculation methods related to crowd intelligence [2], such as the multiagent system,distributed collaboration, and open-source platform.
文摘We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide value beyond that of constitutive model development. The developed methodology utilises Bayesian optimisation to minimise the error between experimental measurements and numerical simulations performed in LS-DYNA. We demonstrate the optimisation methodology using high hardness armour steels across three types of experiments that induce a wide range of loading conditions: ballistic penetration, rod-on-anvil, and near-field blast deformation. By utilising such a broad range of conditions for the optimisation, the resulting constitutive model parameters are generalised, i.e., applicable across the range of loading conditions encompassed the by those experiments(e.g., stress states, plastic strain magnitudes, strain rates, etc.). Model constants identified using this methodology are demonstrated to provide a generalisable model with superior predictive accuracy than those derived from conventional mechanical characterisation experiments or optimised from a single experimental condition.
文摘Levenberg-Marquardt(LM)algorithm is applied for the optimization of the heat transfer of a batch reactor.The validity of the approach is verified through comparison with experimental results.It is found that the mathematical model can properly describe the heat transfer relationships characterizing the considered system,with the error being kept within±2℃.Indeed,the difference between the actual measured values and the model calculated value curve is within±1.5℃,which is in agreement with the model assumptions and demonstrates the reliability and effectiveness of the algorithm applied to the batch reactor heat transfer model.Therefore,the present work provides a theoretical reference for the conversion of practical problems in the field of chemical production into mathematical models.