We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods...We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant forma...This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.展开更多
In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based o...In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.展开更多
Electrolyte additives play an important role in suppressing lithium dendrites through tailoring the composition/property of the SEI,however lacking of additives can achieve high performances both in ether and carbonat...Electrolyte additives play an important role in suppressing lithium dendrites through tailoring the composition/property of the SEI,however lacking of additives can achieve high performances both in ether and carbonate electrolytes hinders further enhancement of the high voltage lithium^-metal batteries.Here,lithium perchlorate(LiClO4)has been presented as an excellent additive to meet the above requirements.An optimized chemical composition of SEI can be achieved through the formation of ionic association.Our results indicate that the LiClO4 behaves like a catalyst,which promotes LiTFSI to form a better SEI to inhibit further reaction.Superior coulombic efficiencies and cycling performances were obtained both in ether and carbonate electrolytes.This study paves a new pathway for designing bi-soluble additives for safe lithium metal batteries.展开更多
In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary ...In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.展开更多
Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further pu...Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.展开更多
Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures.A heavy-loaded aerospace bracket is desig...Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures.A heavy-loaded aerospace bracket is designed by topology optimization and manufactured by additive manufacturing technology in this work.Considering both mechanical forces and temperature loads,a formulation of thermo-elastic topology optimization is firstly proposed and the sensitivity analysis is derived in detail.Then the procedure of numerical optimization design is presented and the final design is additively manufactured using Selective Laser Melting(SLM).The mass of the aerospace bracket is reduced by over 18%,benefiting from topology and size optimization,and the three constraints are satisfied as well in the final design.This work indicates that the integration of thermo-elastic topology optimization and additive manufacturing technologies can be a rather powerful tool kit for the design of structures under thermal-mechanical loading.展开更多
This paper presents a novel evasion guidance law for hypersonic morphing vehicles,focusing on determining the optimized wing's unfolded angle to promote maneuverability based on an intelligent algorithm.First,the ...This paper presents a novel evasion guidance law for hypersonic morphing vehicles,focusing on determining the optimized wing's unfolded angle to promote maneuverability based on an intelligent algorithm.First,the pursuit-evasion problem is modeled as a Markov decision process.And the agent's action consists of maneuver overload and the unfolded angle of wings,which is different from the conventional evasion guidance designed for fixed-shape vehicles.The reward function is formulated to ensure that the miss distances satisfy the prescribed bounds while minimizing energy consumption.Then,to maximize the expected cumulative reward,a residual learning method is proposed based on proximal policy optimization,which integrates the optimal evasion for linear cases as the baseline and trains to optimize the performance for nonlinear engagement with multiple pursuers.Therefore,offline training guarantees improvement of the constructed evasion guidance law over conventional ones.Ultimately,the guidance law for online implementation includes only analytical calculations.It maps from the confrontation state to the expected angle of attack and the unfolded angle while retaining high computational efficiency.Simulations show that the proposed evasion guidance law can utilize the change of unfolded angle to extend the maximum overload capability.And it surpasses conventional maneuver strategies by ensuring better evasion efficacy and higher energy efficiency.展开更多
This paper proposed a new structure of highly-dense micro-jet arrays for hybrid jet-impingement/microchannel heat sinks(~120 jet per cm^(2) with jet width of 0.35 mm).Parametric study is performed to investigate the i...This paper proposed a new structure of highly-dense micro-jet arrays for hybrid jet-impingement/microchannel heat sinks(~120 jet per cm^(2) with jet width of 0.35 mm).Parametric study is performed to investigate the influence of structure and flow parameters on the convective heat transfer of water jet cooling in confined space.The simulation results show that the optimal jet width,jet spacing and impingement distance are around 0.2 mm,0.2 mm and 0.3 mm,respectively,which can achieve a low thermal resistance as well as a relatively low pressure drop.The analysis of the heat transfer pathways shows that the micro-fin jet structures can extend the impinging heat transfer area and conduct a considerable proportion of heat,which can reach up to 38.9%with the Reynolds number ranging from 797.1 to 5602.2.The heat transfer characteristics in the heat sink will shift from impingement dominated heat transfer to the channel-convection dominated heat transfer as the jet impingement distance increases.A correlation is proposed to predict the average Nusselt number on the stagnation area for the heat sink with different structure parameters,and the deviations of predictions from the numerical results are less than 10%.展开更多
An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a...An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a nonlinear optimal control problem,which is difficult to solve due to the existence of nonlinear kinematics and nonconvex constraints.After convexification treatments and discretization,the solution to the original problem can be approximately obtained by solving a sequence of Second-Order Cone Programming(SOCP)problems,which can be readily solved by state-of-the-art Interior-Point Methods(IPMs).To mitigate the sensibility of the algorithm on the user-provided initial profile,a Two-Stage Sequential Convex Programming(TSSCP)method is presented in detail.Furthermore,numerical simulations under different mission scenarios are conducted to show the superiority of the proposed method in solving the cooperative guidance problem.The research indicated that the TSSCP method is more tractable and reliable than the traditional methods and has great potential for real-time processing and on-board implementation.展开更多
In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simul...In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simultaneous layout optimization of the lattices and stiffeners in thin-walled structures.First,the representative lattice units of the selected lattices are equivalent to the virtual homogeneous materials whose effective elastic matrixes are achieved by the energy-based homogenization method.Meanwhile,the stiffeners are modelled using the solid material.Subsequently,the multi-material topology optimization formulation is established for both the virtual homogeneous materials and solid material to minimize the structural compliance under mass constraint.Thus,the optimal layout of both the lattices and stiffeners could be simultaneously attained by the optimization procedure.Two applications,the aircraft panel structure and the equipment mounting plate,are dealt with to demonstrate the detailed design procedure and reveal the effect of the proposed method.According to numerical comparisons and experimental results,the thin-walled structures with lattices and stiffeners have significant advantages over the traditional stiffened thin-walled structures and lattice sandwich structures in terms of static,dynamic and anti-instability performance.展开更多
Small-scale roughness elements or imperfections are inevitable over the surface of a flight vehicle.The aerodynamics of these small-scale structures is difficult to predict but may play an important role in the design...Small-scale roughness elements or imperfections are inevitable over the surface of a flight vehicle.The aerodynamics of these small-scale structures is difficult to predict but may play an important role in the design of a flight vehicle at high speed.The forward-facing step is a typical type of roughness element.Many experiments have been conducted to study the aerodynamics of supersonic forward-facing step,especially with a step height larger than boundary layer thickness.However,few studies focus on small steps.To improve the understanding of small-scale forwardfacing step flow,we perform a series of simulations to analyze its aerodynamic influence on a Mach number 5 turbulent boundary layer.The general flow structures are analyzed and discussed.Several shock waves can be induced by the step even if the step height is much smaller than the boundary layer thickness.Two significant shocks are the separation shock and the reattachment shock.The influenced area by the step is limited.With the increase of the step height,the non-dimensional influence area decreases and gradually converges when the step height reaches the boundary layer thickness.There are two normalized distributions of the skin friction coefficient and pressure coefficient associated with step height.By using the normalized parameters,a power-law relationship between the step height and the drag increment coefficient is revealed and fits the simulation results well.It is further illustrated that this relationship still holds when changing the inlet angle of attack,but needs slight modification with the angle of attack.展开更多
基金supported by the National Natural Science Foundation of China (NSFC)under Grant Nos.12172350,11772322 and 11702238。
文摘We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金supported by the Natural Science Foundation of China(61101004 61803014)
文摘This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.
文摘In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.
基金financial supports from the Foundation of National Key Laboratory(No.6142808180202),P.R.Chinathe Pre-Research Foundation(Nos.61407210406,61407210208,41421080401),P.R.China。
文摘Electrolyte additives play an important role in suppressing lithium dendrites through tailoring the composition/property of the SEI,however lacking of additives can achieve high performances both in ether and carbonate electrolytes hinders further enhancement of the high voltage lithium^-metal batteries.Here,lithium perchlorate(LiClO4)has been presented as an excellent additive to meet the above requirements.An optimized chemical composition of SEI can be achieved through the formation of ionic association.Our results indicate that the LiClO4 behaves like a catalyst,which promotes LiTFSI to form a better SEI to inhibit further reaction.Superior coulombic efficiencies and cycling performances were obtained both in ether and carbonate electrolytes.This study paves a new pathway for designing bi-soluble additives for safe lithium metal batteries.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-Optical Equipment Institute,Aviation Industry Corporation of China (6142504200108)。
文摘In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.
文摘Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.
基金supported by the National Key Research and Development Program of China(Nos.2017YFB1102800,2016YFB0201600)the National Natural Science Foundation of China(Nos.11672239,51735005)。
文摘Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures.A heavy-loaded aerospace bracket is designed by topology optimization and manufactured by additive manufacturing technology in this work.Considering both mechanical forces and temperature loads,a formulation of thermo-elastic topology optimization is firstly proposed and the sensitivity analysis is derived in detail.Then the procedure of numerical optimization design is presented and the final design is additively manufactured using Selective Laser Melting(SLM).The mass of the aerospace bracket is reduced by over 18%,benefiting from topology and size optimization,and the three constraints are satisfied as well in the final design.This work indicates that the integration of thermo-elastic topology optimization and additive manufacturing technologies can be a rather powerful tool kit for the design of structures under thermal-mechanical loading.
基金This work was supported by the National Natural Science Foundation of China(No.52202438).
文摘This paper presents a novel evasion guidance law for hypersonic morphing vehicles,focusing on determining the optimized wing's unfolded angle to promote maneuverability based on an intelligent algorithm.First,the pursuit-evasion problem is modeled as a Markov decision process.And the agent's action consists of maneuver overload and the unfolded angle of wings,which is different from the conventional evasion guidance designed for fixed-shape vehicles.The reward function is formulated to ensure that the miss distances satisfy the prescribed bounds while minimizing energy consumption.Then,to maximize the expected cumulative reward,a residual learning method is proposed based on proximal policy optimization,which integrates the optimal evasion for linear cases as the baseline and trains to optimize the performance for nonlinear engagement with multiple pursuers.Therefore,offline training guarantees improvement of the constructed evasion guidance law over conventional ones.Ultimately,the guidance law for online implementation includes only analytical calculations.It maps from the confrontation state to the expected angle of attack and the unfolded angle while retaining high computational efficiency.Simulations show that the proposed evasion guidance law can utilize the change of unfolded angle to extend the maximum overload capability.And it surpasses conventional maneuver strategies by ensuring better evasion efficacy and higher energy efficiency.
基金funded by the National Natural Science Foundation of China(52176020)the Youth Innovation Team of Shaanxi Universities。
文摘This paper proposed a new structure of highly-dense micro-jet arrays for hybrid jet-impingement/microchannel heat sinks(~120 jet per cm^(2) with jet width of 0.35 mm).Parametric study is performed to investigate the influence of structure and flow parameters on the convective heat transfer of water jet cooling in confined space.The simulation results show that the optimal jet width,jet spacing and impingement distance are around 0.2 mm,0.2 mm and 0.3 mm,respectively,which can achieve a low thermal resistance as well as a relatively low pressure drop.The analysis of the heat transfer pathways shows that the micro-fin jet structures can extend the impinging heat transfer area and conduct a considerable proportion of heat,which can reach up to 38.9%with the Reynolds number ranging from 797.1 to 5602.2.The heat transfer characteristics in the heat sink will shift from impingement dominated heat transfer to the channel-convection dominated heat transfer as the jet impingement distance increases.A correlation is proposed to predict the average Nusselt number on the stagnation area for the heat sink with different structure parameters,and the deviations of predictions from the numerical results are less than 10%.
基金supported by the Joint Foundation of the Ministry of Education of China(No.6141A02022340).
文摘An improved approach is presented in this paper to implement highly constrained cooperative guidance to attack a stationary target.The problem with time-varying Proportional Navigation(PN)gain is first formulated as a nonlinear optimal control problem,which is difficult to solve due to the existence of nonlinear kinematics and nonconvex constraints.After convexification treatments and discretization,the solution to the original problem can be approximately obtained by solving a sequence of Second-Order Cone Programming(SOCP)problems,which can be readily solved by state-of-the-art Interior-Point Methods(IPMs).To mitigate the sensibility of the algorithm on the user-provided initial profile,a Two-Stage Sequential Convex Programming(TSSCP)method is presented in detail.Furthermore,numerical simulations under different mission scenarios are conducted to show the superiority of the proposed method in solving the cooperative guidance problem.The research indicated that the TSSCP method is more tractable and reliable than the traditional methods and has great potential for real-time processing and on-board implementation.
基金supported by the National Natural Science Foundation of China(No.12172294,51735005,12032018).
文摘In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simultaneous layout optimization of the lattices and stiffeners in thin-walled structures.First,the representative lattice units of the selected lattices are equivalent to the virtual homogeneous materials whose effective elastic matrixes are achieved by the energy-based homogenization method.Meanwhile,the stiffeners are modelled using the solid material.Subsequently,the multi-material topology optimization formulation is established for both the virtual homogeneous materials and solid material to minimize the structural compliance under mass constraint.Thus,the optimal layout of both the lattices and stiffeners could be simultaneously attained by the optimization procedure.Two applications,the aircraft panel structure and the equipment mounting plate,are dealt with to demonstrate the detailed design procedure and reveal the effect of the proposed method.According to numerical comparisons and experimental results,the thin-walled structures with lattices and stiffeners have significant advantages over the traditional stiffened thin-walled structures and lattice sandwich structures in terms of static,dynamic and anti-instability performance.
基金financial support from the National Natural Science Foundation of China(Nos.11602127 and 11572176)。
文摘Small-scale roughness elements or imperfections are inevitable over the surface of a flight vehicle.The aerodynamics of these small-scale structures is difficult to predict but may play an important role in the design of a flight vehicle at high speed.The forward-facing step is a typical type of roughness element.Many experiments have been conducted to study the aerodynamics of supersonic forward-facing step,especially with a step height larger than boundary layer thickness.However,few studies focus on small steps.To improve the understanding of small-scale forwardfacing step flow,we perform a series of simulations to analyze its aerodynamic influence on a Mach number 5 turbulent boundary layer.The general flow structures are analyzed and discussed.Several shock waves can be induced by the step even if the step height is much smaller than the boundary layer thickness.Two significant shocks are the separation shock and the reattachment shock.The influenced area by the step is limited.With the increase of the step height,the non-dimensional influence area decreases and gradually converges when the step height reaches the boundary layer thickness.There are two normalized distributions of the skin friction coefficient and pressure coefficient associated with step height.By using the normalized parameters,a power-law relationship between the step height and the drag increment coefficient is revealed and fits the simulation results well.It is further illustrated that this relationship still holds when changing the inlet angle of attack,but needs slight modification with the angle of attack.