Background In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying ...Background In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular ovulation in avians is a complex biological process that remains unclear.Results Critical biochemical events involved in ovulation in domestic chickens(Gallus gallus) were evaluated by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory follicle(F1) and postovulatory follicle(POF1) in continuous laying(CL) and intermittent laying(IL) chickens indicated the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes(DEGs), and the smallest difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin A, and lactate dehydrogenase A(LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA decreased cell viability and promoted apoptosis of ovarian follicles in vitro.Conclusions This study reveals several important biochemical events involved in the process of ovulation, as well as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian species.展开更多
Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma rema...Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma remains controversial.We previously reported that HBO can promote apoptosis,shorten protrusions,and delay growth of glioblastoma,but the molecular mechanism is unclear.We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients.Methods Glioblastoma cell lines exposed to repetitive HBO or normobaric air(NBA)were collected for RNA isolation and microarray data analysis.GO analysis,KEGG pathway analysis and survival analysis of the differentially expressed genes(DEGs)were performed.Results HBO not only inhibited hypoxia-inducing genes including CA9,FGF11,PPFIA4,TCAF2 and SLC2A12,but also regulated vascularization by downregulating the expression of COL1A1,COL8A1,COL12A1,RHOJ and FILIP1L,ultimately attenuated hypoxic microenvironment of glioblastoma.HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2,CARD8,MYD88 and CD180.HBO prevented metastasis by downregulating the expression of NTM,CXCL12,CXCL13,CXCR4,CXCR5,CDC42,IGFBP3,IGFBP5,GPC6,MMP19,ADAMTS1,EFEMP1,PTBP3,NF1 and PDCD1.HBO upregulated the expression of BAK1,PPIF,DDIT3,TP53I11 and FAS,whereas downregulated the expression of MDM4 and SIVA1,thus promoting apoptosis.HBO upregulated the expression of CDC25A,MCM2,PCNA,RFC33,DSCC1 and CDC14A,whereas downregulated the expression of ASNS,CDK6,CDKN1B,PTBP3 and MAD2L1,thus inhibiting cell cycle progression.Among these DEGs,17 indicator-genes of HBO prolonging survival were detected.Conclusions HBO is beneficial for glioblastoma.Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy.These potential therapeutic targets especially COL1A1,ADAMTS1 and PTBP3 deserve further validation.展开更多
Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 ...Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann–Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes.Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy.Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.展开更多
P omegranate(Punica granatum L.)has attracted considerable attention in world markets due to its valuable nutrients and highly appreciated sensory properties.The aroma profiles of 4 varieties of pomegranate juice,incl...P omegranate(Punica granatum L.)has attracted considerable attention in world markets due to its valuable nutrients and highly appreciated sensory properties.The aroma profiles of 4 varieties of pomegranate juice,including Dahongtian(DP),Jingpitian(JP),Luyudan(LP),and Tianhonngdan(TP),were investigated via gas chromatography-mass spectrometry(GC-MS)and gas chromatography-olfactometry(GC-O)analyses.A total of 43 volatile compounds were identified by using GC-MS.Among these compounds,16 were considered as potential aroma-active compounds as detected by GC-O.These compounds belonged to the classes of terpinenes,alcohols,and aldehydes.Eleven volatile compounds were defined as the main contributors to the overall aroma of pomegranate juice due to their high odor activity values(OAVs≥1).Aroma recombination and omission tests confirmed thatβ-myrcene,1-hexanol,and(Z)-3-hexen-1-ol were the key aroma compounds,and limonene,1-octen-3-ol,linalool,and hexanal were important aroma-active compounds in DP samples.展开更多
As important yield-related traits,thousand-grain weight(TGW),grain number per spike(GNS)and grain weight per spike(GWS)are crucial components of wheat production.To dissect their underlying genetic basis,a double hapl...As important yield-related traits,thousand-grain weight(TGW),grain number per spike(GNS)and grain weight per spike(GWS)are crucial components of wheat production.To dissect their underlying genetic basis,a double haploid(DH)population comprised of 198 lines derived from 8762/Keyi 5214 was constructed.We then used genechip to genotype the DH population and integrated the yield-related traits TGW,GNS and GWS for QTL mapping.Finally,we obtained a total of 18942 polymorphic SNP markers and identified 41 crucial QTLs for these traits.Three stable QTLs for TGW were identified on chromosomes 2D(QTgw-2D.3 and QTgw-2D.4)and 6A(QTgw-6A.1),with additive alleles all from the parent 8762,explaining 4.81–18.67%of the phenotypic variations.Five stable QTLs for GNS on chromosomes 3D,5B,5D and 6A were identified.QGns-5D.1 was from parent 8762,while the other four QTLs were from parent Keyi 5214,explaining 5.89–7.08%of the GNS phenotypic variations.In addition,a stable GWS genetic locus QGws-4A.3 was detected from the parent 8762,which explained 6.08–6.14%of the phenotypic variations.To utilize the identified QTLs,we developed STARP markers for four important QTLs,Tgw2D.3-2,Tgw2D.4-1,Tgw6A.1 and Gns3D.1.Our results provide important basic resources and references for the identification and cloning of genes related to TGW,GNS and GWS in wheat.展开更多
Climate change and energy security issues are prominent challenges in current energy system management,which should be governed synergistically due to the feedback relationships between them.The“Energy Systems Manage...Climate change and energy security issues are prominent challenges in current energy system management,which should be governed synergistically due to the feedback relationships between them.The“Energy Systems Management and Climate Change”Special Collection Issue in the journal of Energy Engineering provide insights into the field of energy systems management and climate change.From an extended perspective,this study discusses the key issues,research methods and models for energy system management and climate change research.Comprehensive and accurate prediction of energy supply and demand,the evaluation on the energy system resilience to climate change and the coupling methodology application of both nature and social science field maybe the frontier topics around achieving sustainable development goals of energy systems.展开更多
Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing ai...Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing air pollution only based on AQI monitoring data the fact that the same degree of air pollution is more harmful in more densely populated areas is ignored.In the present study,multi-source data were combined to map the distribution of the AQI and population data,and the analyze their pollution population exposure of Beijing in 2018 was analyzed.Machine learning based on the random forest algorithm was adopted to calculate the monthly average AQI of Beijing in 2018.Using Luojia-1 nighttime light remote sensing data,population statistics data,the population of Beijing in 2018 and point of interest data,the distribution of the permanent population in Beijing was estimated with a high precision of 200 m×200 m.Based on the spatialization results of the AQI and population of Beijing,the air pollution exposure levels in various parts of Beijing were calculated using the population-weighted pollution exposure level(PWEL)formula.The results show that the southern region of Beijing had a more serious level of air pollution,while the northern region was less polluted.At the same time,the population was found to agglomerate mainly in the central city and the peripheric areas thereof.In the present study,the exposure of different districts and towns in Beijing to pollution was analyzed,based on high resolution population spatialization data,it could take the pollution exposure issue down to each individual town.And we found that towns with higher exposure such as Yongshun Town,Shahe Town and Liyuan Town were all found to have a population of over 200000 which was much higher than the median population of townships of51741 in Beijing.Additionally,the change trend of air pollution exposure levels in various regions of Beijing in 2018 was almost the same,with the peak value being in winter and the lowest value being in summer.The exposure intensity in population clusters was relatively high.To reduce the level and intensity of pollution exposure,relevant departments should strengthen the governance of areas with high AQI,and pay particular attention to population clusters.展开更多
With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate pred...With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate prediction of key alarm variables in chemical process can indicate the possible change to reduce the probability of abnormal conditions. According to the characteristics of chemical process data, this work proposed a key alarm variables prediction model in chemical process based on dynamic-inner principal component analysis(DiPCA) and long short-term memory(LSTM). DiPCA is used to extract the most dynamic components for prediction. While LSTM is used to learn the relationship and predict the key alarm variables. This work used a simulation data set and a real hydrogenation process data set for applications and explained the model validity from the essential characteristics. Comparison of results with different models shows that our model has better prediction accuracy and performance, which can provide the basis for fault prognosis and health management.展开更多
The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is...The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is a critical task to formulate pertinent strategies to alleviate traffic congestion.Compared with traditional short-time traffic prediction,this study proposes a machine learning algorithm-based traffic forecasting model for daily-level peak hour traffic operation status prediction by using abundant historical data of urban traffic performance index(TPI).The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors on the quality of road network operation,including day of week,time period,public holiday,car usage restriction policy,special events,etc.Based on long-term historical TPI data,this research proposed a daily dimensional road network TPI prediction model by using an extreme gradient boosting algorithm(XGBoost).The model validation results show that the model prediction accuracy can reach higher than 90%.Compared with other prediction models,including Bayesian Ridge,Linear Regression,ElatsicNet,SVR,the XGBoost model has a better performance,and proves its superiority in large high-dimensional data sets.The daily dimensional prediction model proposed in this paper has an important application value for predicting traffic status and improving the operation quality of urban road networks.展开更多
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea...Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract f...Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.展开更多
High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. How...High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.展开更多
Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fer...Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.展开更多
The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candid...The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candidates for the next-generation energy storage system.Herein,a bifunctional electrocatalyst,indium phthalocyanine self-assembled with carbon nanotubes(InPc@CNT)composite material,is proposed to promote the conversion kinetics of both reduction and oxidation processes,demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li_(2)S species.The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process,as well as the modulation of electron transfer dynamics also endows the dissolution of Li_(2)S in the oxidation reaction,which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization.Moreover,the InPc@CNT modified separator displays lower overpotential for polysulfide transformation,alleviating polarization of electrode during cycling.The integrated spectroscopy analysis,HRTEM,and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes.Therefore,the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g^(-1)at a high rate of 0.5 C.Additionally,the 2 Ah Li-S pouch cells deliver 315 Wh kg^(-1)and achieved 80%capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm^(-2).Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries.展开更多
Cooperation among enterprises can bring overall and individual performance improvement,and a smooth coordination method is indispensable.However,due to the lack of customized coordination methods,cooperation in the do...Cooperation among enterprises can bring overall and individual performance improvement,and a smooth coordination method is indispensable.However,due to the lack of customized coordination methods,cooperation in the downstream oil supply chain cannot be carried out smoothly.This paper intends to propose a multi-party coordination method to promote cooperation between oil shippers and pipeline operator by optimizing oil transportation,oil substitution and pipeline pricing schemes.An integrated game-theoretic modeling and analysis approach is developed to characterize the operation behaviors of all stakeholders in the downstream oil supply chain.The proposed mixed integer nonlinear programming model constrains supply and demand capacity,transportation routes,oil substitution rules and pipeline freight levels.Logarithm transformation and price discretization are introduced for model linear approximation.Simulation experiments are carried out in the oil distribution system in South China.The results show that compared to the business-as-usual scheme,the new scheme saves transportation cost by 3.48%,increases pipeline turnover by 5.7%,and reduces energy consumption and emissions by 7.66%and 6.77%.It is proved that the proposed method improves the revenue of the whole system,achieves fair revenue distribution,and also improves the energy and environmental benefits of the oil supply chain.展开更多
Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electr...Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed.展开更多
基金supported by the National Key Research and Development Program of China (2022YFD1600902)Key Research and Development Program of Shandong (2022LZGC013)China Agriculture Research System (CARS-40)。
文摘Background In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular ovulation in avians is a complex biological process that remains unclear.Results Critical biochemical events involved in ovulation in domestic chickens(Gallus gallus) were evaluated by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory follicle(F1) and postovulatory follicle(POF1) in continuous laying(CL) and intermittent laying(IL) chickens indicated the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes(DEGs), and the smallest difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin A, and lactate dehydrogenase A(LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA decreased cell viability and promoted apoptosis of ovarian follicles in vitro.Conclusions This study reveals several important biochemical events involved in the process of ovulation, as well as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian species.
基金supported by Fundamental-Clinical Research Cooperation Fund of Capital Medical University[No.17JL(TTZX)]Capital’s Funds for Health Improvement and Research(No.2022-2-1072).
文摘Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma remains controversial.We previously reported that HBO can promote apoptosis,shorten protrusions,and delay growth of glioblastoma,but the molecular mechanism is unclear.We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients.Methods Glioblastoma cell lines exposed to repetitive HBO or normobaric air(NBA)were collected for RNA isolation and microarray data analysis.GO analysis,KEGG pathway analysis and survival analysis of the differentially expressed genes(DEGs)were performed.Results HBO not only inhibited hypoxia-inducing genes including CA9,FGF11,PPFIA4,TCAF2 and SLC2A12,but also regulated vascularization by downregulating the expression of COL1A1,COL8A1,COL12A1,RHOJ and FILIP1L,ultimately attenuated hypoxic microenvironment of glioblastoma.HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2,CARD8,MYD88 and CD180.HBO prevented metastasis by downregulating the expression of NTM,CXCL12,CXCL13,CXCR4,CXCR5,CDC42,IGFBP3,IGFBP5,GPC6,MMP19,ADAMTS1,EFEMP1,PTBP3,NF1 and PDCD1.HBO upregulated the expression of BAK1,PPIF,DDIT3,TP53I11 and FAS,whereas downregulated the expression of MDM4 and SIVA1,thus promoting apoptosis.HBO upregulated the expression of CDC25A,MCM2,PCNA,RFC33,DSCC1 and CDC14A,whereas downregulated the expression of ASNS,CDK6,CDKN1B,PTBP3 and MAD2L1,thus inhibiting cell cycle progression.Among these DEGs,17 indicator-genes of HBO prolonging survival were detected.Conclusions HBO is beneficial for glioblastoma.Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy.These potential therapeutic targets especially COL1A1,ADAMTS1 and PTBP3 deserve further validation.
基金supported by the National Key Research and Development Program of China(2022YFC2702900 and 2021YFC2701103)National Natural Science Foundation of China(82171654)。
文摘Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann–Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes.Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy.Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.
基金funded by Shaanxi Natural Science Foundation (2019JQ-665)Xi’an Agricultural Science and Technology Project (20NYYF0021)supported by the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China (SPFW2020YB12)
文摘P omegranate(Punica granatum L.)has attracted considerable attention in world markets due to its valuable nutrients and highly appreciated sensory properties.The aroma profiles of 4 varieties of pomegranate juice,including Dahongtian(DP),Jingpitian(JP),Luyudan(LP),and Tianhonngdan(TP),were investigated via gas chromatography-mass spectrometry(GC-MS)and gas chromatography-olfactometry(GC-O)analyses.A total of 43 volatile compounds were identified by using GC-MS.Among these compounds,16 were considered as potential aroma-active compounds as detected by GC-O.These compounds belonged to the classes of terpinenes,alcohols,and aldehydes.Eleven volatile compounds were defined as the main contributors to the overall aroma of pomegranate juice due to their high odor activity values(OAVs≥1).Aroma recombination and omission tests confirmed thatβ-myrcene,1-hexanol,and(Z)-3-hexen-1-ol were the key aroma compounds,and limonene,1-octen-3-ol,linalool,and hexanal were important aroma-active compounds in DP samples.
基金the Henan Modern Agricultural Industrial Technology System Construction,China(HARS-22-1-Z7)。
文摘As important yield-related traits,thousand-grain weight(TGW),grain number per spike(GNS)and grain weight per spike(GWS)are crucial components of wheat production.To dissect their underlying genetic basis,a double haploid(DH)population comprised of 198 lines derived from 8762/Keyi 5214 was constructed.We then used genechip to genotype the DH population and integrated the yield-related traits TGW,GNS and GWS for QTL mapping.Finally,we obtained a total of 18942 polymorphic SNP markers and identified 41 crucial QTLs for these traits.Three stable QTLs for TGW were identified on chromosomes 2D(QTgw-2D.3 and QTgw-2D.4)and 6A(QTgw-6A.1),with additive alleles all from the parent 8762,explaining 4.81–18.67%of the phenotypic variations.Five stable QTLs for GNS on chromosomes 3D,5B,5D and 6A were identified.QGns-5D.1 was from parent 8762,while the other four QTLs were from parent Keyi 5214,explaining 5.89–7.08%of the GNS phenotypic variations.In addition,a stable GWS genetic locus QGws-4A.3 was detected from the parent 8762,which explained 6.08–6.14%of the phenotypic variations.To utilize the identified QTLs,we developed STARP markers for four important QTLs,Tgw2D.3-2,Tgw2D.4-1,Tgw6A.1 and Gns3D.1.Our results provide important basic resources and references for the identification and cloning of genes related to TGW,GNS and GWS in wheat.
基金supported by the Fundamental Research Funds for the Central Universities(2022SKNY01,2022YJSNY04).
文摘Climate change and energy security issues are prominent challenges in current energy system management,which should be governed synergistically due to the feedback relationships between them.The“Energy Systems Management and Climate Change”Special Collection Issue in the journal of Energy Engineering provide insights into the field of energy systems management and climate change.From an extended perspective,this study discusses the key issues,research methods and models for energy system management and climate change research.Comprehensive and accurate prediction of energy supply and demand,the evaluation on the energy system resilience to climate change and the coupling methodology application of both nature and social science field maybe the frontier topics around achieving sustainable development goals of energy systems.
基金Under the auspices of National Natural Science Foundation of China (No.42071342,31870713,42171329)Natural Science Foundation of Beijing,China (No.8222069,8222052)。
文摘Air pollution is a problem that directly affects human health,the global environment and the climate.The air quality index(AQI)indicates the degree of air pollution and effect on human health;however,when assessing air pollution only based on AQI monitoring data the fact that the same degree of air pollution is more harmful in more densely populated areas is ignored.In the present study,multi-source data were combined to map the distribution of the AQI and population data,and the analyze their pollution population exposure of Beijing in 2018 was analyzed.Machine learning based on the random forest algorithm was adopted to calculate the monthly average AQI of Beijing in 2018.Using Luojia-1 nighttime light remote sensing data,population statistics data,the population of Beijing in 2018 and point of interest data,the distribution of the permanent population in Beijing was estimated with a high precision of 200 m×200 m.Based on the spatialization results of the AQI and population of Beijing,the air pollution exposure levels in various parts of Beijing were calculated using the population-weighted pollution exposure level(PWEL)formula.The results show that the southern region of Beijing had a more serious level of air pollution,while the northern region was less polluted.At the same time,the population was found to agglomerate mainly in the central city and the peripheric areas thereof.In the present study,the exposure of different districts and towns in Beijing to pollution was analyzed,based on high resolution population spatialization data,it could take the pollution exposure issue down to each individual town.And we found that towns with higher exposure such as Yongshun Town,Shahe Town and Liyuan Town were all found to have a population of over 200000 which was much higher than the median population of townships of51741 in Beijing.Additionally,the change trend of air pollution exposure levels in various regions of Beijing in 2018 was almost the same,with the peak value being in winter and the lowest value being in summer.The exposure intensity in population clusters was relatively high.To reduce the level and intensity of pollution exposure,relevant departments should strengthen the governance of areas with high AQI,and pay particular attention to population clusters.
基金support from the National Natural Science Foundation of China (21878171)。
文摘With the increase in the complexity of industrial system, simply detecting and diagnosing a fault may be insufficient in some cases, and prognosing the fault ahead of time could have a certain necessity. Accurate prediction of key alarm variables in chemical process can indicate the possible change to reduce the probability of abnormal conditions. According to the characteristics of chemical process data, this work proposed a key alarm variables prediction model in chemical process based on dynamic-inner principal component analysis(DiPCA) and long short-term memory(LSTM). DiPCA is used to extract the most dynamic components for prediction. While LSTM is used to learn the relationship and predict the key alarm variables. This work used a simulation data set and a real hydrogenation process data set for applications and explained the model validity from the essential characteristics. Comparison of results with different models shows that our model has better prediction accuracy and performance, which can provide the basis for fault prognosis and health management.
基金funded by the National Natural Science Foundation of China(NFSC)(No.52072011)。
文摘The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is a critical task to formulate pertinent strategies to alleviate traffic congestion.Compared with traditional short-time traffic prediction,this study proposes a machine learning algorithm-based traffic forecasting model for daily-level peak hour traffic operation status prediction by using abundant historical data of urban traffic performance index(TPI).The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors on the quality of road network operation,including day of week,time period,public holiday,car usage restriction policy,special events,etc.Based on long-term historical TPI data,this research proposed a daily dimensional road network TPI prediction model by using an extreme gradient boosting algorithm(XGBoost).The model validation results show that the model prediction accuracy can reach higher than 90%.Compared with other prediction models,including Bayesian Ridge,Linear Regression,ElatsicNet,SVR,the XGBoost model has a better performance,and proves its superiority in large high-dimensional data sets.The daily dimensional prediction model proposed in this paper has an important application value for predicting traffic status and improving the operation quality of urban road networks.
基金supported by the Natural Science Foundation of Beijing,China(7214223,7212027)the Beijing Hospitals Authority Youth Programme(QML20210601)+3 种基金the Chinese Scholarship Council(CSC)scholarship(201706210415)the National Key Research and Development Program of China(2017YFC0908800)the Beijing Municipal Health Commission(PXM2020_026272_000002,PXM2020_026272_000014)the National Natural Science Foundation of China(82070293).
文摘Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金supported by the National Natural Science Foundation of China,Nos.31 730030 (to XL),81941011 (to XL),31 771053 (to HD),82271403 (to XL),82272171 (to ZY),31971279 (to ZY)82201542 (to FH)+1 种基金the Natural Science Foundation of Beijing,No.7222004 (to HD)the Science and Technology Program of Beijing,No.Z181100001818007(to ZY)
文摘Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.
基金supported by grants from the Key Project of Guangzhou (Grant No.202103000085)National Natural Science Foundation of China (Grant No.31902014)+1 种基金Guangzhou Science and Technology Project (Grant No.202102020502)Fruit and Vegetable Industry System Innovation Team Project of Guangdong (Grant No.2021KJ110)。
文摘High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.
基金funded by National Key R&D Program of China(2022YFA1304204)Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2017-FRI-04)Beijing Innovation Consortium of livestock Research System(BAIC05-2023)。
文摘Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.
基金financially supported by the Key Program of the National Natural Science Foundation of China(Nos.21935006).
文摘The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candidates for the next-generation energy storage system.Herein,a bifunctional electrocatalyst,indium phthalocyanine self-assembled with carbon nanotubes(InPc@CNT)composite material,is proposed to promote the conversion kinetics of both reduction and oxidation processes,demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li_(2)S species.The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process,as well as the modulation of electron transfer dynamics also endows the dissolution of Li_(2)S in the oxidation reaction,which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization.Moreover,the InPc@CNT modified separator displays lower overpotential for polysulfide transformation,alleviating polarization of electrode during cycling.The integrated spectroscopy analysis,HRTEM,and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes.Therefore,the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g^(-1)at a high rate of 0.5 C.Additionally,the 2 Ah Li-S pouch cells deliver 315 Wh kg^(-1)and achieved 80%capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm^(-2).Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries.
基金partially supported by the Science Foundation of China University of Petroleum,Beijing(2462023XKBH013)the National Natural Science Foundation of China(52202405)。
文摘Cooperation among enterprises can bring overall and individual performance improvement,and a smooth coordination method is indispensable.However,due to the lack of customized coordination methods,cooperation in the downstream oil supply chain cannot be carried out smoothly.This paper intends to propose a multi-party coordination method to promote cooperation between oil shippers and pipeline operator by optimizing oil transportation,oil substitution and pipeline pricing schemes.An integrated game-theoretic modeling and analysis approach is developed to characterize the operation behaviors of all stakeholders in the downstream oil supply chain.The proposed mixed integer nonlinear programming model constrains supply and demand capacity,transportation routes,oil substitution rules and pipeline freight levels.Logarithm transformation and price discretization are introduced for model linear approximation.Simulation experiments are carried out in the oil distribution system in South China.The results show that compared to the business-as-usual scheme,the new scheme saves transportation cost by 3.48%,increases pipeline turnover by 5.7%,and reduces energy consumption and emissions by 7.66%and 6.77%.It is proved that the proposed method improves the revenue of the whole system,achieves fair revenue distribution,and also improves the energy and environmental benefits of the oil supply chain.
基金supported by the China Petrochemical Corporation(222260).
文摘Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed.