According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotr...According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.展开更多
The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of eac...The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of each subcell are obtained using different excitation lasers. The PL intensity has a fast degradation after irradiation, and decreases as the displacement damage dose increases. Furthermore, the normalized PL intensity varying with the displacement damage dose is analyzed in detail, and then the lifetime damage coefficients of the recombination centers for GaInP top-cell, GaAs mid-cell and Ge bottom-cell of the triple-junction solar cells are determined from the PL radiative efficiency.展开更多
GaInP/GaAs/Ge triple-junction solar cells were irradiated with 50 keV and 100 keV protons at fluences of 5 × 10^10 cm^-2, 1 × 10^11 cm^-2,1 × 10^12 cm^-2, and 1 × 10^13 cm^-2. Their performance deg...GaInP/GaAs/Ge triple-junction solar cells were irradiated with 50 keV and 100 keV protons at fluences of 5 × 10^10 cm^-2, 1 × 10^11 cm^-2,1 × 10^12 cm^-2, and 1 × 10^13 cm^-2. Their performance degradation is analyzed using current-voltage characteristics and spectral response measurements, and then the changes in Isc, Voc, Pmax and the spectral response of the cells are observed as functions of proton irradiation fluence and energy. The results show that the spectral response of the top cell degrades more significantly than that of the middle cell, and 100 keV proton-induced degradation rates of Isc, Voc and Pmax are larger compared with 50 keV proton irradiation.展开更多
Photolumineseenee measurements are carried out to investigate the injection-enhanced annealing behavior of electron radiation-induced defects in a GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells which a...Photolumineseenee measurements are carried out to investigate the injection-enhanced annealing behavior of electron radiation-induced defects in a GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells which are irradiated by 1.8 MeV with a fluence of i ~ 1015 cm-2. Minority-carrier injection under forward bias is observed to enhance the defect annealing in the GaAs middle cell, and the removal rate of the defect is determined with photoluminescenee radiative efficiency recovery. Furthermore, the injection-enhanced defect removal rates obey a simple Arrhenius law. Therefore, the annealing activation energy is acquired and is equal to 0.58eV. Finally, in comparison of the annealing activation energies, the E5 defect is identified as a primary non-radiative recombination center.展开更多
The irradiation effects of 0.28-2.80 MeV protons on GalnP/GaAs/Ge solar cells have been analysed, and then correlated with the displacement damage dose. The results of I-V and spectral response measurements, combined ...The irradiation effects of 0.28-2.80 MeV protons on GalnP/GaAs/Ge solar cells have been analysed, and then correlated with the displacement damage dose. The results of I-V and spectral response measurements, combined with the SRIM-derived vacancies produced rates, show that the degradation of the solar cells is largely determined by the displacement damage of the GaAs sub-cell. Thus the SRIM-derived NIEL values for protons in the GaAs sub-cell are used to calculate the displacement damage dose. It is shown that the irradiation effects of the solar cells caused by protons at different energies are correlated well with the aid of displacement damage dose.展开更多
Tantalum phosphide(TaP) is predicted to be a kind of topological semimetal. Several defects of TaP induced by H irradiation are studied by the density functional theory. Electronic dispersion curves and density of s...Tantalum phosphide(TaP) is predicted to be a kind of topological semimetal. Several defects of TaP induced by H irradiation are studied by the density functional theory. Electronic dispersion curves and density of states of these defects are reported. Various defects have different impacts on the topological properties. Weyl point positions are not affected by most defects. The H atom can tune the Fermi level as an interstitial. The defect of substitutional H on P site does not affect the topological properties. P and Ta vacancies of concentration 1/64 as well as the defect of substitutional H on Ta site destruct part of the Weyl points.展开更多
[Objective] This study aimed to explore the mutagenesis effects of N+ ion beam implantation on Streptomyces a/bus and obtain high-yield salinomycin- producing mutant strain. [ Method ] Streptomyces a/bus strain S-11-...[Objective] This study aimed to explore the mutagenesis effects of N+ ion beam implantation on Streptomyces a/bus and obtain high-yield salinomycin- producing mutant strain. [ Method ] Streptomyces a/bus strain S-11-04 was mutated with different doses of N + implantation. The effects of low energy N * implantation on the survival rate, colony morphology and salinomycin-producing ability were investigated. [ Result] The results showed that low energy N + implantation can efficiently improve the positive mutation rate of Streptomyces albus; 13 mutant strains with high yield of salinomycin were isolated; to be specific, mutant strain N3- 6 has relatively good genetic stability with four continuous generations, and the titres of salinomycin were increased by 41% in the shake-flask culture and 20.5% in mass production compared with the control. [ Conclusion ] N + ion beam irradiation is an effective method to obtain high-yield salinomycin-producing Streptomy- ces albus strain.展开更多
An efficient quantum secure direct communication network protocol with the two-step scheme is proposed by using the Einstein-Podolsky-Rosen (EPR) pair block as the quantum information carrier. The server, say Alice,...An efficient quantum secure direct communication network protocol with the two-step scheme is proposed by using the Einstein-Podolsky-Rosen (EPR) pair block as the quantum information carrier. The server, say Alice, prepares and measures the EPR pairs in the quantum communication and the users perform the four local unitary operations to encode their message. Anyone of the legitimate users can communicate another one on the network securely. Since almost all of the instances in this scheme are useful and each EPR pair can carry two bits of information, the efficiency for qubits and the source capacity both approach the maximal values.展开更多
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
An efficient quantum cryptography network protocol is proposed with d-dimensional polarized photons, without resorting to entanglement and quantum memory. A server on the network, say Alice, provides the service for p...An efficient quantum cryptography network protocol is proposed with d-dimensional polarized photons, without resorting to entanglement and quantum memory. A server on the network, say Alice, provides the service for preparing and measuring single photons whose initial state are |0〉. The users code the information on the single photons with some unitary operations. To prevent the untrustworthy server Alice from eavesdropping the quantum lines, a nonorthogonal-coding technique is used in the process that the quantum signal is transmitted between the users. This protocol does not require the servers and the users to store the quantum states and almost all of the single photons can be used for carrying the information, which makes it more convenient for application than others with present technology. We also discuss the case with a faint laser pulse.展开更多
A general scheme for controlled teleportation of an arbitrary multi-qudit state with d-dimensional Greenberger- Horne--Zeilinger (GHZ) states is proposed. For an arbitrary m-qudit state, the sender Alice performs m ...A general scheme for controlled teleportation of an arbitrary multi-qudit state with d-dimensional Greenberger- Horne--Zeilinger (GHZ) states is proposed. For an arbitrary m-qudit state, the sender Alice performs m generalized Bell-state projective measurements on her 2m qudits and the controllers need only take some single-particle measurements. The receiver Charlie can reconstruct the unknown m-qudit state by performing some single-qudit unitary operations on her particles if she cooperates with all the controllers. As the quantum channel is a sequence of maximally entangled GHZ states, the intrinsic efticiency for qudits in this scheme approaches 100% in principle.展开更多
We present a quantum hyperdense coding protocol with hyperentanglement in polarization and spatial-mode degrees of freedom of photons first and then give the details for a quantum secure direct communication(QSDC)prot...We present a quantum hyperdense coding protocol with hyperentanglement in polarization and spatial-mode degrees of freedom of photons first and then give the details for a quantum secure direct communication(QSDC)protocol based on this quantum hyperdense coding protocol.This QSDC protocol has the advantage of having a higher capacity than the quantum communication protocols with a qubit system.Compared with the QSDC protocol based on superdense coding with𝑑-dimensional systems,this QSDC protocol is more feasible as the preparation of a high-dimension quantum system is more difficult than that of a two-level quantum system at present.展开更多
The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evapora...The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system ^(148)Xe+^(208)Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of ^(208)Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.展开更多
In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the server...In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.展开更多
An improved isospin dependent Boltzmann Langevin model,in which the inelastic channels and momentum dependent interactions are incorporated,is used to investigate the high-density behavior of nuclear symmetry energy.B...An improved isospin dependent Boltzmann Langevin model,in which the inelastic channels and momentum dependent interactions are incorporated,is used to investigate the high-density behavior of nuclear symmetry energy.By taking several forms of nuclear symmetry energy,we calculate the time evolutions of neutron over proton ratio,π multiplicity and π-/π+ ratio,and the kinetic energy and transverse momentum spectra of π-/π+ ratio in the heavy ion collisions at 400A MeV.It is found that the neutron over proton ratio and π-/π+ ratio are very sensitive to the nuclear symmetry energy,and the π-is more sensitive to the nuclear symmetry energy than the π+.A supersoft symmetry energy results in a larger π-/π+ ratio.展开更多
In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understand...In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.展开更多
A scheme for three-party quantum secret sharing of a private key is presented with single photons. The agent Bob first prepares a sequence of single photons with two biased bases and then sends them to the boss Alice ...A scheme for three-party quantum secret sharing of a private key is presented with single photons. The agent Bob first prepares a sequence of single photons with two biased bases and then sends them to the boss Alice who checks the security of the transmission with measurements and produces some decoy photons by rearranging the orders of some sample photons. Alice encodes her bits with two unitary operations on the photons and then sends them to the other agent. The security of this scheme is equivalent to that in the modified Bennett Brassard 1984 quantum key distribution protocol. Moreover, each photon can carry one bit of the private key and the intrinsic efficiency for qubits and the total efficiency both approach the maximal value 100% when the number of the bits in the key is very large.展开更多
An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the phot...An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations Ⅰ, σx, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total effciency both approach the maximal values.展开更多
Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical a...Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical and numerical research progress of this challenging topic is reviewed.Many new findings are presented by different approaches such as the worldline instantons,the S-matrix theory,the kinetic method by solving the quantum Vlasov equation or/and the real-time DiraceHeisenbergeWigner formalism,the computational quantum field theory by solving the Dirac equation and so on.In particular,the effects of electric field polarizations on pair production are unveiled with different patterns of created momentum spectra.The effects of polarizations on the number density of created particles and the nonperturbative signatures of multiphoton process are also presented.The competitive interplay between the multiphoton process and nonperturbation process plays a key role in these new findings.These newly discovered phenomena are valuable to deepen the understanding of pair production in complex fields and even have an implication to the study of strong-field ionization.More recent studies on the pair production in complex fields as well as beyond laser fields are briefly presented in the view point of perspective future.展开更多
In this paper a high-dimension multiparty quantum secret sharing scheme is proposed by using Einstein-Podolsky-Rosen pairs and local unitary operators. This scheme has the advantage of not only having higher capacity,...In this paper a high-dimension multiparty quantum secret sharing scheme is proposed by using Einstein-Podolsky-Rosen pairs and local unitary operators. This scheme has the advantage of not only having higher capacity, but also saving storage space. The security analysis is also given.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179010 and 11075017 )the Natural Science Foundation of Beijing,China (Grant No. 1102019)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003120010)
文摘According to intensity distribution of the synchrotron radiation source focused by a toroidal mirror at the Beijing synchrotron radiation biological macromolecule station, theoretical modeling of the Beijing synchrotron radiation source is developed for capillary optics. Using this theoretical modeling, the influences of the configuration curve of the polycapillary X-ray lens on transmission efficiency and working distance are analyzed. The experimental results of the transmission efficiency and working distance at the biological macromolecule station are in good agreement with the theoretical results.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10675023,11075018,11375028 and 11675020the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20120003110011
文摘The radiation damage of three individual subcells for GalnP/GaAs//Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of each subcell are obtained using different excitation lasers. The PL intensity has a fast degradation after irradiation, and decreases as the displacement damage dose increases. Furthermore, the normalized PL intensity varying with the displacement damage dose is analyzed in detail, and then the lifetime damage coefficients of the recombination centers for GaInP top-cell, GaAs mid-cell and Ge bottom-cell of the triple-junction solar cells are determined from the PL radiative efficiency.
基金supported by National Natural Science Foundation of China(Nos.10675023,11075018)the Fundamental Research Funds for the Central Universities of China
文摘GaInP/GaAs/Ge triple-junction solar cells were irradiated with 50 keV and 100 keV protons at fluences of 5 × 10^10 cm^-2, 1 × 10^11 cm^-2,1 × 10^12 cm^-2, and 1 × 10^13 cm^-2. Their performance degradation is analyzed using current-voltage characteristics and spectral response measurements, and then the changes in Isc, Voc, Pmax and the spectral response of the cells are observed as functions of proton irradiation fluence and energy. The results show that the spectral response of the top cell degrades more significantly than that of the middle cell, and 100 keV proton-induced degradation rates of Isc, Voc and Pmax are larger compared with 50 keV proton irradiation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10675023,11075018 and 11375028the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20120003110011
文摘Photolumineseenee measurements are carried out to investigate the injection-enhanced annealing behavior of electron radiation-induced defects in a GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells which are irradiated by 1.8 MeV with a fluence of i ~ 1015 cm-2. Minority-carrier injection under forward bias is observed to enhance the defect annealing in the GaAs middle cell, and the removal rate of the defect is determined with photoluminescenee radiative efficiency recovery. Furthermore, the injection-enhanced defect removal rates obey a simple Arrhenius law. Therefore, the annealing activation energy is acquired and is equal to 0.58eV. Finally, in comparison of the annealing activation energies, the E5 defect is identified as a primary non-radiative recombination center.
基金Supported by the National Natural Science Foundation of China under Grant No 10675023, and Beijing Excellent Personality Foundation.
文摘The irradiation effects of 0.28-2.80 MeV protons on GalnP/GaAs/Ge solar cells have been analysed, and then correlated with the displacement damage dose. The results of I-V and spectral response measurements, combined with the SRIM-derived vacancies produced rates, show that the degradation of the solar cells is largely determined by the displacement damage of the GaAs sub-cell. Thus the SRIM-derived NIEL values for protons in the GaAs sub-cell are used to calculate the displacement damage dose. It is shown that the irradiation effects of the solar cells caused by protons at different energies are correlated well with the aid of displacement damage dose.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11635003,11025524,11675280 and11161130520the Fundamental Research Funds for the Central Universities+1 种基金the National Basic Research Program of China under Grant No 2010CB832903the European Commissions 7th Framework Programme(FP7-PEOPLE-2010-IRSES)under Grant No 269131
文摘Tantalum phosphide(TaP) is predicted to be a kind of topological semimetal. Several defects of TaP induced by H irradiation are studied by the density functional theory. Electronic dispersion curves and density of states of these defects are reported. Various defects have different impacts on the topological properties. Weyl point positions are not affected by most defects. The H atom can tune the Fermi level as an interstitial. The defect of substitutional H on P site does not affect the topological properties. P and Ta vacancies of concentration 1/64 as well as the defect of substitutional H on Ta site destruct part of the Weyl points.
文摘[Objective] This study aimed to explore the mutagenesis effects of N+ ion beam implantation on Streptomyces a/bus and obtain high-yield salinomycin- producing mutant strain. [ Method ] Streptomyces a/bus strain S-11-04 was mutated with different doses of N + implantation. The effects of low energy N * implantation on the survival rate, colony morphology and salinomycin-producing ability were investigated. [ Result] The results showed that low energy N + implantation can efficiently improve the positive mutation rate of Streptomyces albus; 13 mutant strains with high yield of salinomycin were isolated; to be specific, mutant strain N3- 6 has relatively good genetic stability with four continuous generations, and the titres of salinomycin were increased by 41% in the shake-flask culture and 20.5% in mass production compared with the control. [ Conclusion ] N + ion beam irradiation is an effective method to obtain high-yield salinomycin-producing Streptomy- ces albus strain.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10447106, 10435020, 10254002, A0325401 and 10374010, and Beijing Education Committee under Grant No XK100270454.
文摘An efficient quantum secure direct communication network protocol with the two-step scheme is proposed by using the Einstein-Podolsky-Rosen (EPR) pair block as the quantum information carrier. The server, say Alice, prepares and measures the EPR pairs in the quantum communication and the users perform the four local unitary operations to encode their message. Anyone of the legitimate users can communicate another one on the network securely. Since almost all of the instances in this scheme are useful and each EPR pair can carry two bits of information, the efficiency for qubits and the source capacity both approach the maximal values.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10604008, 10435020, 10254002 and A0325401, and the Beijing Education Committee under Grant No XK100270454.
文摘An efficient quantum cryptography network protocol is proposed with d-dimensional polarized photons, without resorting to entanglement and quantum memory. A server on the network, say Alice, provides the service for preparing and measuring single photons whose initial state are |0〉. The users code the information on the single photons with some unitary operations. To prevent the untrustworthy server Alice from eavesdropping the quantum lines, a nonorthogonal-coding technique is used in the process that the quantum signal is transmitted between the users. This protocol does not require the servers and the users to store the quantum states and almost all of the single photons can be used for carrying the information, which makes it more convenient for application than others with present technology. We also discuss the case with a faint laser pulse.
基金* Supported by the National Natural Science Foundation of China under Grant Nos 10604008 and 10435020, and Beijing Education Committee under Grant No XK100270454.
文摘A general scheme for controlled teleportation of an arbitrary multi-qudit state with d-dimensional Greenberger- Horne--Zeilinger (GHZ) states is proposed. For an arbitrary m-qudit state, the sender Alice performs m generalized Bell-state projective measurements on her 2m qudits and the controllers need only take some single-particle measurements. The receiver Charlie can reconstruct the unknown m-qudit state by performing some single-qudit unitary operations on her particles if she cooperates with all the controllers. As the quantum channel is a sequence of maximally entangled GHZ states, the intrinsic efticiency for qudits in this scheme approaches 100% in principle.
基金Supported by the National Natural Science Foundation of China under Grant No 10974020the Beijing Natural Science Foundation under Grant No 1082008the Fundamental Research Funds for the Central Universities。
文摘We present a quantum hyperdense coding protocol with hyperentanglement in polarization and spatial-mode degrees of freedom of photons first and then give the details for a quantum secure direct communication(QSDC)protocol based on this quantum hyperdense coding protocol.This QSDC protocol has the advantage of having a higher capacity than the quantum communication protocols with a qubit system.Compared with the QSDC protocol based on superdense coding with𝑑-dimensional systems,this QSDC protocol is more feasible as the preparation of a high-dimension quantum system is more difficult than that of a two-level quantum system at present.
基金supported by the National Natural Science Foundation of China under Grants Nos.11635003,11025524 and 11161130520the National Basic Research Program of China under Grant No.2010CB832903+1 种基金the European Commission’s 7th Framework Programme(Fp7-PEOPLE-2010-IRSES)under Grant Agreement Project No.269131the Project funded by China Postdoctoral Science Foundation(Grant No.2016M600956)
文摘The production mechanism of heavy neutronrich nuclei is investigated by using the multinucleon transfer reactions of ^(136;148)Xe+^(208)Pb and ^(238)U+^(208)Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system ^(148)Xe+^(208)Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of ^(208)Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.
基金Supported by National Natural Science Foundation of China(NSFC) projects (Nos.11025524 and 11161130520)National Basic Research Program of China(No.2010CB832903)
文摘An improved isospin dependent Boltzmann Langevin model,in which the inelastic channels and momentum dependent interactions are incorporated,is used to investigate the high-density behavior of nuclear symmetry energy.By taking several forms of nuclear symmetry energy,we calculate the time evolutions of neutron over proton ratio,π multiplicity and π-/π+ ratio,and the kinetic energy and transverse momentum spectra of π-/π+ ratio in the heavy ion collisions at 400A MeV.It is found that the neutron over proton ratio and π-/π+ ratio are very sensitive to the nuclear symmetry energy,and the π-is more sensitive to the nuclear symmetry energy than the π+.A supersoft symmetry energy results in a larger π-/π+ ratio.
文摘In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10604008 and 10435020 and Beijing Education Committee under Grant No XK100270454.
文摘A scheme for three-party quantum secret sharing of a private key is presented with single photons. The agent Bob first prepares a sequence of single photons with two biased bases and then sends them to the boss Alice who checks the security of the transmission with measurements and produces some decoy photons by rearranging the orders of some sample photons. Alice encodes her bits with two unitary operations on the photons and then sends them to the other agent. The security of this scheme is equivalent to that in the modified Bennett Brassard 1984 quantum key distribution protocol. Moreover, each photon can carry one bit of the private key and the intrinsic efficiency for qubits and the total efficiency both approach the maximal value 100% when the number of the bits in the key is very large.
基金Supported by the National Natural Science Foundation of China under Grant No 10447106, and Beijing Education Committee under Grant No XK100270454.
文摘An effcient multiparty quantum secret sharing scheme is proposed with Greenberger-Horne-Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations Ⅰ, σx, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total effciency both approach the maximal values.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.11475026,11175023also supported partially by the Open Fund of National Laboratory of Science and Technology on Computational Physics at IAPCM and the Fundamental Research Funds for the Central Universities(FRFCU).
文摘Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical and numerical research progress of this challenging topic is reviewed.Many new findings are presented by different approaches such as the worldline instantons,the S-matrix theory,the kinetic method by solving the quantum Vlasov equation or/and the real-time DiraceHeisenbergeWigner formalism,the computational quantum field theory by solving the Dirac equation and so on.In particular,the effects of electric field polarizations on pair production are unveiled with different patterns of created momentum spectra.The effects of polarizations on the number density of created particles and the nonperturbative signatures of multiphoton process are also presented.The competitive interplay between the multiphoton process and nonperturbation process plays a key role in these new findings.These newly discovered phenomena are valuable to deepen the understanding of pair production in complex fields and even have an implication to the study of strong-field ionization.More recent studies on the pair production in complex fields as well as beyond laser fields are briefly presented in the view point of perspective future.
基金Project supported by the National Fundamental Research Program (Grant No 001CB309308), China National Natural Science Foundation (Grant Nos 60433050, 10325521, 10447106), the Hang-Tian Science Fund, the SRFDP program of Education Ministry of China and Beijing Education Committee (Grant No XK100270454).
文摘In this paper a high-dimension multiparty quantum secret sharing scheme is proposed by using Einstein-Podolsky-Rosen pairs and local unitary operators. This scheme has the advantage of not only having higher capacity, but also saving storage space. The security analysis is also given.