With the rapid development of agricultural science and technology,animal husbandry,as an important pillar in the field of agriculture,is gradually moving towards a new era of smart animal husbandry with the deep integ...With the rapid development of agricultural science and technology,animal husbandry,as an important pillar in the field of agriculture,is gradually moving towards a new era of smart animal husbandry with the deep integration of informatization and digitalization.This transformation not only breaks through the traditional production mode of animal husbandry,but also promotes it to a new form under the Internet ecology,draws a new blueprint for the development of agriculture and animal husbandry,and gives birth to numerous potential business opportunities for the development of new agriculture.However,the practice and promotion of smart animal husbandry is not a smooth road,and many challenges and problems need to be solved urgently.On the basis of an in-depth investigation of the development status of smart animal husbandry in Beijing,this paper comprehensively analyzes the current problems,including the difficulty of technology integration,the lack of talent reserve,and the need to improve the policy environment.In view of these problems,it puts forward a series of practical suggestions,in order to speed up the development of animal husbandry in Beijing to the direction of smart development,and realize the sustainable development of animal husbandry.展开更多
In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stabilit...In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.展开更多
In light of the rapid expansion of China s economy,there has been a notable shift in the consumption patterns of urban and rural residents.This is evident in the increased consumption of agricultural products,with fru...In light of the rapid expansion of China s economy,there has been a notable shift in the consumption patterns of urban and rural residents.This is evident in the increased consumption of agricultural products,with fruit consumption representing a particularly pronounced trend.The 2023 Beijing Consumption Statistics indicate that demand for fruit is increasing,accompanied by heightened competition for quality and brands.The paper is based on research that examines the current situation of fruit consumption among urban and rural residents in Beijing.The results indicate that when urban and rural residents in Beijing purchase fruits,price is the most significant factor influencing fruit consumption.Taste,appearance,and variety are also considered to be important influencing factors,while the influence of factors such as fruit type,consumption pattern,and fruit brand is relatively minor.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent year...The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.展开更多
Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytoki...Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.展开更多
It is very important to provide reference basis for winter wheat quality regionalization of cultivation area. The aim of this article was based on factors affecting wheat quality and setting realistic spatial models i...It is very important to provide reference basis for winter wheat quality regionalization of cultivation area. The aim of this article was based on factors affecting wheat quality and setting realistic spatial models in each part of the land for assessment of land suitability potentials in Beijing, China. The study employed artificial neural network (ANN) analysis to select factors and evaluate the relative importance of selected environment factors on wheat grain quality. The spatial models were developed and demonstrated their use in selecting the most suitable areas for the winter wheat cultivation. The strategy overcomes the non-accurate traditional statistical methods. Satellite images, toposheet, and ancillary data of the study area were used to find tillable land. These categories were formed by integrating the various layers with corresponding weights in geographical information system (GIS). An integrated land suitability potential (LSP) index was computed considering the contribution of various parameters of land suitability. The study demonstrated that the tillable land could be categorized into spatially distributed agriculture potential zones based on soil nutrient and assembled weather factors using RS and GIS as not suitable, marginally suitable, moderately suitable, suitable, and highly suitable by adopting the logical criteria. The sort of land distribution map made by the factors with their weights showed more truthfulness.展开更多
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-bas...The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein(Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases(CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.展开更多
In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward t...In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward the channel exit to reduce wall sputtering erosion of the walls of the discharge channel,hence ensuring an enhanced lifetime.To study the lifetime characteristics of the high specific impulse Hall thruster,a life test was performed on the HEP-140 MF thruster for the first time,and performance parameters,such as thrust,specific impulse,and efficiency,were measured.Changes in the performance parameters and evolutions in the surface profiles of the discharge channel wall were summarized.The reasons contributing to these changes during the life test were analyzed.Moreover,the accelerated life test method was validated on the HEP-140 MF.展开更多
Megabar pressures are of crucial importance for cutting-edge studies of condensed matter physics and geophysics.With the development of diamond anvil cell(DAC),laboratory studies of high pressure have entered the mega...Megabar pressures are of crucial importance for cutting-edge studies of condensed matter physics and geophysics.With the development of diamond anvil cell(DAC),laboratory studies of high pressure have entered the megabar era for decades.However,it is still challenging to implement in situ magnetic sensing under ultrahigh pressures.In this work,we demonstrate optically detected magnetic resonance and coherent quantum control of diamond nitrogen-vacancy(NV)center,a promising quantum sensor inside the DAC,up to 1.4 Mbar.The pressure dependence of optical and spin properties of NV centers in diamond are quantified,and the evolution of an external magnetic field has been successfully tracked at about 80 GPa.These results shed new light on our understanding of diamond NV centers and pave the way for quantum sensing under extreme conditions.展开更多
At present,the safety and stability of most facility greenhouse environment monitoring systems are seldom considered. In order to improve the stability of data transmission in environment and prevent the system failur...At present,the safety and stability of most facility greenhouse environment monitoring systems are seldom considered. In order to improve the stability of data transmission in environment and prevent the system failure caused by the fault of coordinator,a mechanism based on Zigbee coordinator to improve the stability of the whole system is proposed to ensure the security of wireless data transmission. Finally,the system is tested,and the results show that the system can effectively ensure the fault-free transmission of collected environmental data.展开更多
Marigold ( Tagetes erecta) originated in South America is the main raw material of lutein, which plays a vital role in treating maeula lutea retinae, im- proving immunity and delaying aging. Black spot is the main d...Marigold ( Tagetes erecta) originated in South America is the main raw material of lutein, which plays a vital role in treating maeula lutea retinae, im- proving immunity and delaying aging. Black spot is the main disease reducing marigold production. This paper concluded occurrence and damage of black spot, the species and symptoms of pathogens, pathogenic factors, selection of disease-resistant varieties and effective means against black spot, and made a briefly analysis of the existing problems and the corresponding solutions, in order to provide a theoretical basis for disease-resistant breeding of marigold.展开更多
Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opport...Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opportunities for power distribution development from automation to intelligentialize, and provide technical supports for the power metering system platform. Because of the importance of metering products and their market demand, this paper focuses on the design of a simple power metering chip with low-cost, low-precision and non-invasive, so as to lay the foundation for the development and practical technology accumulation of power metering products. The design achieves low cost by reducing the acquisition accuracy, simplifying the collection and sampling methods. This paper studies the chip accuracy, sampling methods, collection methods, and the inference of the chip characteristics requirements.展开更多
In order to solve the problem of excessive noise and vibration during the operation of the hydraulic transformer,an optimization method of valve plate damping hole structure is proposed to alleviate the phenomenon of ...In order to solve the problem of excessive noise and vibration during the operation of the hydraulic transformer,an optimization method of valve plate damping hole structure is proposed to alleviate the phenomenon of pressure shock.Firstly,the mathematical model of oil pressure gradient in the plunger cavity is established,and the incremental equation of pressure change is derived.Secondly,a kind of buffering structure is proposed,the corresponding relationship between the pressure change and the envelopment angle of the buffering hole and the aperture size is determined by analyzing the oil pressure change curve in the plunger cavity.Finally,the flow field models with buffering holes are established,and the transient simulation of the pressure change process under the optimal solution is carried out with ANSYS software and the flow field pressure distribution contours are obtained.Through the analysis of simulation results,it is concluded that the optimal envelope angle of the three buffer holes ofA-T-B-Ais 5°,and the optimal aperture is 1.8 mm,1.6 mm,and 1.7 mm,respectively.The buffer hole can achieve a better-buffering effect in the range of variable pressure angle[0°,101°].The buffer hole structure can effectively alleviate the pressure shock and reduce the noise level,which lays a foundation for the design and theoretical research of hydraulic transformers.展开更多
Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applic...Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.展开更多
Objective:This multi-center,open-label,randomized,parallel-controlled phaseⅡstudy aimed to compare the pharmacokinetics(PK),pharmacodynamics(PD)and safety profile of ripertamab(SCT400),a recombinant antiCD20 monoclon...Objective:This multi-center,open-label,randomized,parallel-controlled phaseⅡstudy aimed to compare the pharmacokinetics(PK),pharmacodynamics(PD)and safety profile of ripertamab(SCT400),a recombinant antiCD20 monoclonal antibody,to rituximab(MabThera^(■))in patients with CD20-positive B-cell non-Hodgkin lymphoma(NHL).Methods:Patients with CD20-positive B-cell NHL who achieved complete remission or unconfirmed complete remission after standard treatment were randomly assigned at a 1:1 ratio to receive a single dose of ripertamab(375mg/m^(2))or rituximab(MabThera^(■),375 mg/m^(2)).PK was evaluated using area under the concentration-time curve(AUC)from time 0 to d 85(AUC_(0-85d)),AUC from time 0 to week 1(AUC0-1 w),AUC from time 0 to week 2(AUC_(0-2 w)),AUC from time 0 to week 3(AUC_(0-3 w)),AUC from time 0 to week 8(AUC_(0-8 w)),maximum serum concentration(C_(max)),terminal half-life(T_(1/2)),time to maximum serum concentration(T_(max))and clearance(CL).Bioequivalence was confirmed if the 90%confidence interval(90%CI)of the geometric mean ratio of ripertamab/rituximab was within the pre-defined bioequivalence range of 80.0%-125.0%.PD,immunogenicity,and safety were also evaluated.Results:From December 30,2014 to November 24,2015,a total of 84 patients were randomized(ripertamab,n=42;rituximab,n=42)and the PK analysis was performed on 76 patients(ripertamab,n=38;rituximab,n=38).The geometric mean ratios of ripertamab/rituximab for AUC_(0-85d),ATC_(0-inf),and Cmaxwere 96.1%(90%CI:87.6%-105.5%),95.9%(90%CI:86.5%-106.4%)and 97.4%(90%CI:91.6%-103.6%),respectively.All PK parameters met the pre-defined bioequivalence range of 80.0%-125.0%.For PD and safety evaluation,there was no statistical difference in peripheral CD 19-positive B-cell counts and CD20-positive B-cell counts at each visit,and no difference in the incidence of anti-drug antibodies was observed between the two groups.The incidences of treatment-emergent adverse events and treatment-related adverse events were also comparable between the two groups.Conclusions:In this study,the PK,PD,immunogenicity,and safety profile of ripertamab(SCT400)were similar to rituximab(MabThera^(■))in Chinese patients with CD20-positive B-cell NHL.展开更多
This paper studies and analyzes the rigorous requirements of railway 5G private network core network(5GC)equipment based on network function virtualization(NFV)technology in terms of reliability,security,latency and o...This paper studies and analyzes the rigorous requirements of railway 5G private network core network(5GC)equipment based on network function virtualization(NFV)technology in terms of reliability,security,latency and other aspects of communication cloud,compares cloud platform schemes with different decoupling modes,and proposes that railway 5GC should be implemented by software and hardware integration scheme or software and hardware two-layer decoupling scheme.At the same time,the redundancy and disaster recovery schemes and measures that can be taken by 5GC based on cloud platform are proposed.Finally,taking the products of ZTE Corporation as an example,the implementation architecture of railway 5GC cloud platform in 1+1 redundancy mode is given.It serves as a reference for the engineering construction of 5G-R core network.展开更多
Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension a...Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension and cerebral small vessel disease remains unclear.Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease.Chronic hypertension and lifestyle factors are associated with risks for stro ke and dementia,and cerebral small vessel disease can cause dementia and stroke.Hypertension is the main driver of cerebral small vessel disease,which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction,leukoaraiosis,white matter lesions,and intracerebral hemorrhage,ultimately res ulting in cognitive decline and demonstrating that the brain is the to rget organ of hypertension.This review updates our understanding of the pathogenesis of hypertensioninduced cerebral small vessel disease and the res ulting changes in brain structure and function and declines in cognitive ability.We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.展开更多
The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorat...The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis.展开更多
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological...Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.展开更多
基金Supported by College Students Research Training Program of Beijing University of Agriculture.
文摘With the rapid development of agricultural science and technology,animal husbandry,as an important pillar in the field of agriculture,is gradually moving towards a new era of smart animal husbandry with the deep integration of informatization and digitalization.This transformation not only breaks through the traditional production mode of animal husbandry,but also promotes it to a new form under the Internet ecology,draws a new blueprint for the development of agriculture and animal husbandry,and gives birth to numerous potential business opportunities for the development of new agriculture.However,the practice and promotion of smart animal husbandry is not a smooth road,and many challenges and problems need to be solved urgently.On the basis of an in-depth investigation of the development status of smart animal husbandry in Beijing,this paper comprehensively analyzes the current problems,including the difficulty of technology integration,the lack of talent reserve,and the need to improve the policy environment.In view of these problems,it puts forward a series of practical suggestions,in order to speed up the development of animal husbandry in Beijing to the direction of smart development,and realize the sustainable development of animal husbandry.
文摘In the economic development of Beijing,although the share of the total amount of agricultural industry in the overall economy is relatively low,it has an important impact on the daily life of residents,social stability and the development of other industries.Changping District,as an important agricultural production base of Beijing,its agricultural development has an indispensable strategic significance for the stability and growth of the entire regional economy.Therefore,it is very important to study the structure of agricultural industry in Changping District.Based on the detailed analysis of the agricultural industrial structure of Changping District,this paper uses the grey relation theory to analyze the different industries in the agricultural industrial structure of Changping District,including planting,forestry,animal husbandry,fishery and agricultural,forestry,service industries,in order to reveal the impact of these industries on the agricultural industrial structure of Changping District.Through this study,it comes up with specific and feasible suggestions for the optimization of agricultural industrial structure in Changping District,and provides valuable reference for the agricultural development of other areas in Beijing.
文摘In light of the rapid expansion of China s economy,there has been a notable shift in the consumption patterns of urban and rural residents.This is evident in the increased consumption of agricultural products,with fruit consumption representing a particularly pronounced trend.The 2023 Beijing Consumption Statistics indicate that demand for fruit is increasing,accompanied by heightened competition for quality and brands.The paper is based on research that examines the current situation of fruit consumption among urban and rural residents in Beijing.The results indicate that when urban and rural residents in Beijing purchase fruits,price is the most significant factor influencing fruit consumption.Taste,appearance,and variety are also considered to be important influencing factors,while the influence of factors such as fruit type,consumption pattern,and fruit brand is relatively minor.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金supported by the STI2030-Major Projects(2021ZD0200900 to Y.G.Y.)"Light of West China" Program of the Chinese Academy of Sciences(xbzg-zdsys-202302 to Y.G.Y.)
文摘The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.
基金supported by the National Natural Science Foundation of China,Nos.32070735(to QL),82371321(to QL),82171270(to ZL)Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1(to ZL)+2 种基金the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)。
文摘Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.
基金supported by the National Natural Science Foundation of China (40701120)the Beijing Nova Program, China (2008B33)the Beijing Natural Science Foundation, China (4092016)
文摘It is very important to provide reference basis for winter wheat quality regionalization of cultivation area. The aim of this article was based on factors affecting wheat quality and setting realistic spatial models in each part of the land for assessment of land suitability potentials in Beijing, China. The study employed artificial neural network (ANN) analysis to select factors and evaluate the relative importance of selected environment factors on wheat grain quality. The spatial models were developed and demonstrated their use in selecting the most suitable areas for the winter wheat cultivation. The strategy overcomes the non-accurate traditional statistical methods. Satellite images, toposheet, and ancillary data of the study area were used to find tillable land. These categories were formed by integrating the various layers with corresponding weights in geographical information system (GIS). An integrated land suitability potential (LSP) index was computed considering the contribution of various parameters of land suitability. The study demonstrated that the tillable land could be categorized into spatially distributed agriculture potential zones based on soil nutrient and assembled weather factors using RS and GIS as not suitable, marginally suitable, moderately suitable, suitable, and highly suitable by adopting the logical criteria. The sort of land distribution map made by the factors with their weights showed more truthfulness.
基金supported by the National Natural Science Foundation of China (82270355, 82270354, 81970134, 82030011, 31630093)the National Key Research and Development Program of China (2019YFA0801601, 2021YFA1101801)。
文摘The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein(Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases(CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.
基金supported by Space Advance Research program (No. D010509)National Natural Science Foundation of China (No. 51806011)National Defense Pre-Research Foundation of China (No. JSZL2016203C006)。
文摘In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward the channel exit to reduce wall sputtering erosion of the walls of the discharge channel,hence ensuring an enhanced lifetime.To study the lifetime characteristics of the high specific impulse Hall thruster,a life test was performed on the HEP-140 MF thruster for the first time,and performance parameters,such as thrust,specific impulse,and efficiency,were measured.Changes in the performance parameters and evolutions in the surface profiles of the discharge channel wall were summarized.The reasons contributing to these changes during the life test were analyzed.Moreover,the accelerated life test method was validated on the HEP-140 MF.
基金supported by the Beijing Natural Science Foundation(Grant No.Z200009)Chinese Academy of Sciences(Grant Nos.YJKYYQ20190082,XDB28000000,XDB33000000,XDB25000000,and QYZDBSSW-SLH013)+2 种基金the National Natural Science Foundation of China(Grant Nos.11974020,12022509,12074422,11934018,and T2121001)the National Key Research and Development Program of China(Grant Nos.2019YFA0308100,2021YFA1400300,and 2018YFA0305700)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.202003)。
文摘Megabar pressures are of crucial importance for cutting-edge studies of condensed matter physics and geophysics.With the development of diamond anvil cell(DAC),laboratory studies of high pressure have entered the megabar era for decades.However,it is still challenging to implement in situ magnetic sensing under ultrahigh pressures.In this work,we demonstrate optically detected magnetic resonance and coherent quantum control of diamond nitrogen-vacancy(NV)center,a promising quantum sensor inside the DAC,up to 1.4 Mbar.The pressure dependence of optical and spin properties of NV centers in diamond are quantified,and the evolution of an external magnetic field has been successfully tracked at about 80 GPa.These results shed new light on our understanding of diamond NV centers and pave the way for quantum sensing under extreme conditions.
基金Supported by Special Fund for Central Guidance of Local Science and Technology Development(16ZYFNC0010)Tianjin Science and Technology Support Project(14ZCZDNC00005)+6 种基金President's Fund of Tianjin Academy of Agricultural Sciences(16005)Tianjin Agricultural Science and Technology Achievement Transformation and Extension Project(201601220)Tianjin Agricultural Science and Technology Achievement Transformation and Extension Project(201801040)Tianjin Science and Technology Planning Project(17YFZCNC00280)Technical System of Vegetable Modern Agriculture Industry in Tianjin(ITTVRS2017018)Tianjin International Cooperation Project(14RCGFNC00101)Young Researchers Innovative Research and Trial Project(2018006)
文摘At present,the safety and stability of most facility greenhouse environment monitoring systems are seldom considered. In order to improve the stability of data transmission in environment and prevent the system failure caused by the fault of coordinator,a mechanism based on Zigbee coordinator to improve the stability of the whole system is proposed to ensure the security of wireless data transmission. Finally,the system is tested,and the results show that the system can effectively ensure the fault-free transmission of collected environmental data.
基金Supported by Innovation Fund of Beijing Academy of Agriculture and Forestry Science(KJCX20140109,KJCX20140202)Technology Innovation Team Fund of Beijing Academy of Agriculture and Forestry Science(KJCXTD201308)Flower Breeding Innovation Platform Project of Beijing Municipal Bureau of Landscape and Forestry
文摘Marigold ( Tagetes erecta) originated in South America is the main raw material of lutein, which plays a vital role in treating maeula lutea retinae, im- proving immunity and delaying aging. Black spot is the main disease reducing marigold production. This paper concluded occurrence and damage of black spot, the species and symptoms of pathogens, pathogenic factors, selection of disease-resistant varieties and effective means against black spot, and made a briefly analysis of the existing problems and the corresponding solutions, in order to provide a theoretical basis for disease-resistant breeding of marigold.
文摘Metering technology is one of the core technologies of the smart power grid. The overall metering solution and related products have a wide market space in the whole process of power production, which bring new opportunities for power distribution development from automation to intelligentialize, and provide technical supports for the power metering system platform. Because of the importance of metering products and their market demand, this paper focuses on the design of a simple power metering chip with low-cost, low-precision and non-invasive, so as to lay the foundation for the development and practical technology accumulation of power metering products. The design achieves low cost by reducing the acquisition accuracy, simplifying the collection and sampling methods. This paper studies the chip accuracy, sampling methods, collection methods, and the inference of the chip characteristics requirements.
基金Supported by the National Natural Science Foundation of China(No.51975164)Outstanding Youth of Pyramid Talent Training Project ofBeijing University of Civil Engineering and Architecture(No.GDRC20220801)。
文摘In order to solve the problem of excessive noise and vibration during the operation of the hydraulic transformer,an optimization method of valve plate damping hole structure is proposed to alleviate the phenomenon of pressure shock.Firstly,the mathematical model of oil pressure gradient in the plunger cavity is established,and the incremental equation of pressure change is derived.Secondly,a kind of buffering structure is proposed,the corresponding relationship between the pressure change and the envelopment angle of the buffering hole and the aperture size is determined by analyzing the oil pressure change curve in the plunger cavity.Finally,the flow field models with buffering holes are established,and the transient simulation of the pressure change process under the optimal solution is carried out with ANSYS software and the flow field pressure distribution contours are obtained.Through the analysis of simulation results,it is concluded that the optimal envelope angle of the three buffer holes ofA-T-B-Ais 5°,and the optimal aperture is 1.8 mm,1.6 mm,and 1.7 mm,respectively.The buffer hole can achieve a better-buffering effect in the range of variable pressure angle[0°,101°].The buffer hole structure can effectively alleviate the pressure shock and reduce the noise level,which lays a foundation for the design and theoretical research of hydraulic transformers.
文摘Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.
基金funded by Sinocelltech Ltd, Beijing Chinapartly supported by China National Major Project for New Drug Innovation (No. 2012ZX09303012 and No. 2017ZX09304015)
文摘Objective:This multi-center,open-label,randomized,parallel-controlled phaseⅡstudy aimed to compare the pharmacokinetics(PK),pharmacodynamics(PD)and safety profile of ripertamab(SCT400),a recombinant antiCD20 monoclonal antibody,to rituximab(MabThera^(■))in patients with CD20-positive B-cell non-Hodgkin lymphoma(NHL).Methods:Patients with CD20-positive B-cell NHL who achieved complete remission or unconfirmed complete remission after standard treatment were randomly assigned at a 1:1 ratio to receive a single dose of ripertamab(375mg/m^(2))or rituximab(MabThera^(■),375 mg/m^(2)).PK was evaluated using area under the concentration-time curve(AUC)from time 0 to d 85(AUC_(0-85d)),AUC from time 0 to week 1(AUC0-1 w),AUC from time 0 to week 2(AUC_(0-2 w)),AUC from time 0 to week 3(AUC_(0-3 w)),AUC from time 0 to week 8(AUC_(0-8 w)),maximum serum concentration(C_(max)),terminal half-life(T_(1/2)),time to maximum serum concentration(T_(max))and clearance(CL).Bioequivalence was confirmed if the 90%confidence interval(90%CI)of the geometric mean ratio of ripertamab/rituximab was within the pre-defined bioequivalence range of 80.0%-125.0%.PD,immunogenicity,and safety were also evaluated.Results:From December 30,2014 to November 24,2015,a total of 84 patients were randomized(ripertamab,n=42;rituximab,n=42)and the PK analysis was performed on 76 patients(ripertamab,n=38;rituximab,n=38).The geometric mean ratios of ripertamab/rituximab for AUC_(0-85d),ATC_(0-inf),and Cmaxwere 96.1%(90%CI:87.6%-105.5%),95.9%(90%CI:86.5%-106.4%)and 97.4%(90%CI:91.6%-103.6%),respectively.All PK parameters met the pre-defined bioequivalence range of 80.0%-125.0%.For PD and safety evaluation,there was no statistical difference in peripheral CD 19-positive B-cell counts and CD20-positive B-cell counts at each visit,and no difference in the incidence of anti-drug antibodies was observed between the two groups.The incidences of treatment-emergent adverse events and treatment-related adverse events were also comparable between the two groups.Conclusions:In this study,the PK,PD,immunogenicity,and safety profile of ripertamab(SCT400)were similar to rituximab(MabThera^(■))in Chinese patients with CD20-positive B-cell NHL.
文摘This paper studies and analyzes the rigorous requirements of railway 5G private network core network(5GC)equipment based on network function virtualization(NFV)technology in terms of reliability,security,latency and other aspects of communication cloud,compares cloud platform schemes with different decoupling modes,and proposes that railway 5GC should be implemented by software and hardware integration scheme or software and hardware two-layer decoupling scheme.At the same time,the redundancy and disaster recovery schemes and measures that can be taken by 5GC based on cloud platform are proposed.Finally,taking the products of ZTE Corporation as an example,the implementation architecture of railway 5GC cloud platform in 1+1 redundancy mode is given.It serves as a reference for the engineering construction of 5G-R core network.
基金supported by the National Natural Science Foundation of China,Nos.82274611 (to LZ),82104419 (to DM)Capital Science and Technology Leading Talent Training Project,No.Z1 91100006119017 (to LZ)+3 种基金Beijing Hospitals Authority Ascent Plan,No.DFL20190803 (to LZ)Cultivation Fund of Hospital Management Center in Beijing,No.PZ2022006 (to DM)R&D Program of Beijing Municipal Education Commission,No.KM202210025017 (to DM)Beijing Gold-Bridge Project,No.ZZ20145 (to DM)。
文摘Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension and cerebral small vessel disease remains unclear.Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease.Chronic hypertension and lifestyle factors are associated with risks for stro ke and dementia,and cerebral small vessel disease can cause dementia and stroke.Hypertension is the main driver of cerebral small vessel disease,which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction,leukoaraiosis,white matter lesions,and intracerebral hemorrhage,ultimately res ulting in cognitive decline and demonstrating that the brain is the to rget organ of hypertension.This review updates our understanding of the pathogenesis of hypertensioninduced cerebral small vessel disease and the res ulting changes in brain structure and function and declines in cognitive ability.We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
基金supported by the National Natural Science Foundation of China (32072191)Daxing District Major Scientific and Technological Achievements Transformation Project (2020006)+1 种基金Beijing Innovation Team Project of Livestock Industry Technology SystemBeijing Science and Technology Special Project (Z201100002620005)。
文摘The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis.
基金supported by the National Natural Science Foundation of China(22135001)Youth Innovation Promotion Association(2019317)+2 种基金the Young Cross Team Project of CAS(JCTD-2021-14)CAS-CSIRO joint project of Chinese Academy of Sciences(121E32KYSB20190021)Vacuum Interconnected Nanotech Workstation,Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences(CAS)
文摘Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm.