With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agri...With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agricultural practice to be applied in the near future. Toward this end, database resources that deliver web services for plant omics data submission, archiving, and integration are urgently needed. As a part of Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences (CAS), BIG Data Center (http://bigd.big.ac.cn) provides open access to a suite of database resources (Table 1), with the aim of supporting plant research activities for domestic and international users in both academia and industry to translate big data into big discoveries (BIG Data Center Members, 2017;BIG Data Center Members, 2018;BIG Data Center Members, 2019). Here, we give a brief introduction of plant-related database resources in BIG Data Center and appeal to plant research com丒 munities to make full use of these resources for plant data submission, archiving, and integration.展开更多
Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable ...Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable technology uses electronic devices that may be carried as accessories,clothes,or even embedded in the user's body.Although the potential benefits of smart wearables are numerous,their extensive and continual usage creates several privacy concerns and tricky information security challenges.In this paper,we present a comprehensive survey of recent privacy-preserving big data analytics applications based on wearable sensors.We highlight the fundamental features of security and privacy for wearable device applications.Then,we examine the utilization of deep learning algorithms with cryptography and determine their usability for wearable sensors.We also present a case study on privacy-preserving machine learning techniques.Herein,we theoretically and empirically evaluate the privacy-preserving deep learning framework's performance.We explain the implementation details of a case study of a secure prediction service using the convolutional neural network(CNN)model and the Cheon-Kim-Kim-Song(CHKS)homomorphic encryption algorithm.Finally,we explore the obstacles and gaps in the deployment of practical real-world applications.Following a comprehensive overview,we identify the most important obstacles that must be overcome and discuss some interesting future research directions.展开更多
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi...With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.展开更多
背景:运动医学界广泛呼吁采用机器学习技术高效处理庞大、冗杂的运动数据资源,构建智能化的运动损伤预警模型,以实现运动损伤的精准预警。对此类研究成果进行综合归纳与评述,对把握预警模型改进方向,指导中国损伤预警模型构建工作均具...背景:运动医学界广泛呼吁采用机器学习技术高效处理庞大、冗杂的运动数据资源,构建智能化的运动损伤预警模型,以实现运动损伤的精准预警。对此类研究成果进行综合归纳与评述,对把握预警模型改进方向,指导中国损伤预警模型构建工作均具有重要意义。目的:系统梳理基于机器学习技术的运动损伤预警模型相关研究,为中国运动损伤预警模型构建工作提供借鉴。方法:对中国知网、Web of Science和EBSCO数据库进行文献检索,主要检索机器学习技术和运动损伤相关文献,最终纳入61篇运动损伤预警模型相关文献进行分析。结果与结论:①在纳入文献的外部风险特征指标中,缺乏比赛场景类指标,后续需进一步完善相关特征指标的纳入工作,以进一步丰富模型训练的数据集维度;此外,运动损伤预警模型的纳入特征权重方法以过滤法为主,需强化嵌入法及包裹法等权重方法的运用,以增强多风险因素交互效应的分析。②在模型主体训练方面,模型主体训练算法多以监督式学习算法为主,此类算法对样本标注信息的完整度有较高要求,应用场景易受限,后期可增加无监督式与半监督式算法的应用。③在模型性能评估优化方面,现研究主要采用了HoldOut交叉与k-交叉两种验证方式评估模型性能,模型的AUC值范围(0.76±0.12),灵敏度范围(75.92±11.03)%,特异度范围(80.03±4.54)%,F1分数值范围(80.60±10.63)%,准确度范围(69.96±13.10)%,精确度范围(70±14.71)%,数据增强与特征优化为最常见的模型优化操作。当前运动损伤预警模型准确度及精确度均约为70%,预警效果良好,但模型优化操作较单一,多采用数据增强方法提升模型性能,需强化对模型算法、超参数的调整,以进一步提升模型性能。④在模型特征提取方面,纳入的内部风险特征指标多以人体测量学、训练负荷、训练年限和损伤史等指标为主,缺乏运动恢复类指标与身体机能类指标。展开更多
Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regul...Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regulationson data security and privacy have been enacted, making it difficult to centralize data, which can lead to a datasilo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework.However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg)method is used to directly weight the model parameters on average, which may have an adverse effect on te model.Therefore, we propose the Federated Reinforcement Learning (FedRL) model, which consists of multiple userscollaboratively training the model. Each household trains a local model on local data. These local data neverleave the local area, and only the encrypted parameters are uploaded to the central server to participate in thesecure aggregation of the global model. We improve FedAvg by incorporating a Q-learning algorithm to assignweights to each locally uploaded local model. And the model has improved predictive performance. We validatethe performance of the FedRL model by testing it on a real-world dataset and compare the experimental results withother models. The performance of our proposed method in most of the evaluation metrics is improved comparedto both the centralized and distributed models.展开更多
This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains on...This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains only the minimum purchase information such as the purchased product names,the time of purchase,the place of purchase for possible refunds or cancellations of purchases.This study aims to develop AI-based recommendation system by utilizing the minimum transaction data generated by the user-centric payment service.First,we developed a matrix-based extrapolative collaborative filtering algorithm based on open transaction data.The recommendation methodology was verified with the real transaction data.Based on the experimental results,we confirmed that the recommendation performance is satisfactory only with the minimum purchase information.展开更多
基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19050302 to Z.Z.XDA08020102 to Z.Z.)+2 种基金National Natural Science Foundation of China (31871328 to Z.Z.)K.C.Wong Education Foundation (to Z.Z.)The Youth Innovation Promotion Association of Chinese Academy of Sciences (2017141 to S.S.).
文摘With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agricultural practice to be applied in the near future. Toward this end, database resources that deliver web services for plant omics data submission, archiving, and integration are urgently needed. As a part of Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences (CAS), BIG Data Center (http://bigd.big.ac.cn) provides open access to a suite of database resources (Table 1), with the aim of supporting plant research activities for domestic and international users in both academia and industry to translate big data into big discoveries (BIG Data Center Members, 2017;BIG Data Center Members, 2018;BIG Data Center Members, 2019). Here, we give a brief introduction of plant-related database resources in BIG Data Center and appeal to plant research com丒 munities to make full use of these resources for plant data submission, archiving, and integration.
文摘Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable technology uses electronic devices that may be carried as accessories,clothes,or even embedded in the user's body.Although the potential benefits of smart wearables are numerous,their extensive and continual usage creates several privacy concerns and tricky information security challenges.In this paper,we present a comprehensive survey of recent privacy-preserving big data analytics applications based on wearable sensors.We highlight the fundamental features of security and privacy for wearable device applications.Then,we examine the utilization of deep learning algorithms with cryptography and determine their usability for wearable sensors.We also present a case study on privacy-preserving machine learning techniques.Herein,we theoretically and empirically evaluate the privacy-preserving deep learning framework's performance.We explain the implementation details of a case study of a secure prediction service using the convolutional neural network(CNN)model and the Cheon-Kim-Kim-Song(CHKS)homomorphic encryption algorithm.Finally,we explore the obstacles and gaps in the deployment of practical real-world applications.Following a comprehensive overview,we identify the most important obstacles that must be overcome and discuss some interesting future research directions.
文摘With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.
文摘背景:运动医学界广泛呼吁采用机器学习技术高效处理庞大、冗杂的运动数据资源,构建智能化的运动损伤预警模型,以实现运动损伤的精准预警。对此类研究成果进行综合归纳与评述,对把握预警模型改进方向,指导中国损伤预警模型构建工作均具有重要意义。目的:系统梳理基于机器学习技术的运动损伤预警模型相关研究,为中国运动损伤预警模型构建工作提供借鉴。方法:对中国知网、Web of Science和EBSCO数据库进行文献检索,主要检索机器学习技术和运动损伤相关文献,最终纳入61篇运动损伤预警模型相关文献进行分析。结果与结论:①在纳入文献的外部风险特征指标中,缺乏比赛场景类指标,后续需进一步完善相关特征指标的纳入工作,以进一步丰富模型训练的数据集维度;此外,运动损伤预警模型的纳入特征权重方法以过滤法为主,需强化嵌入法及包裹法等权重方法的运用,以增强多风险因素交互效应的分析。②在模型主体训练方面,模型主体训练算法多以监督式学习算法为主,此类算法对样本标注信息的完整度有较高要求,应用场景易受限,后期可增加无监督式与半监督式算法的应用。③在模型性能评估优化方面,现研究主要采用了HoldOut交叉与k-交叉两种验证方式评估模型性能,模型的AUC值范围(0.76±0.12),灵敏度范围(75.92±11.03)%,特异度范围(80.03±4.54)%,F1分数值范围(80.60±10.63)%,准确度范围(69.96±13.10)%,精确度范围(70±14.71)%,数据增强与特征优化为最常见的模型优化操作。当前运动损伤预警模型准确度及精确度均约为70%,预警效果良好,但模型优化操作较单一,多采用数据增强方法提升模型性能,需强化对模型算法、超参数的调整,以进一步提升模型性能。④在模型特征提取方面,纳入的内部风险特征指标多以人体测量学、训练负荷、训练年限和损伤史等指标为主,缺乏运动恢复类指标与身体机能类指标。
基金supported by National Key R&D Program of China(No.2020YFC2006602)National Natural Science Foundation of China(Nos.62172324,62072324,61876217,6187612)+2 种基金University Natural Science Foundation of Jiangsu Province(No.21KJA520005)Primary Research and Development Plan of Jiangsu Province(No.BE2020026)Natural Science Foundation of Jiangsu Province(No.BK20190942).
文摘Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regulationson data security and privacy have been enacted, making it difficult to centralize data, which can lead to a datasilo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework.However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg)method is used to directly weight the model parameters on average, which may have an adverse effect on te model.Therefore, we propose the Federated Reinforcement Learning (FedRL) model, which consists of multiple userscollaboratively training the model. Each household trains a local model on local data. These local data neverleave the local area, and only the encrypted parameters are uploaded to the central server to participate in thesecure aggregation of the global model. We improve FedAvg by incorporating a Q-learning algorithm to assignweights to each locally uploaded local model. And the model has improved predictive performance. We validatethe performance of the FedRL model by testing it on a real-world dataset and compare the experimental results withother models. The performance of our proposed method in most of the evaluation metrics is improved comparedto both the centralized and distributed models.
基金supported under the framework of international cooperation program managed by the National Research Foundation of Korea(NRF 2020K2A9A2A06069972,FY2020)supported by the BK21 FOUR(Fostering Outstanding Universities for Research)funded by the Ministry of Education of the Republic of Korea and National Research Foundation of Korea(NRF)supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2020S1A5B8103855).
文摘This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains only the minimum purchase information such as the purchased product names,the time of purchase,the place of purchase for possible refunds or cancellations of purchases.This study aims to develop AI-based recommendation system by utilizing the minimum transaction data generated by the user-centric payment service.First,we developed a matrix-based extrapolative collaborative filtering algorithm based on open transaction data.The recommendation methodology was verified with the real transaction data.Based on the experimental results,we confirmed that the recommendation performance is satisfactory only with the minimum purchase information.