Heading date is one of the most important traits for rice adaption to different cultivation areas and crop seasons. In this study, two single segment substitution lines(SSSLs), W31-41-61-3-11-3-6-7(W31-SSSL) and W32-5...Heading date is one of the most important traits for rice adaption to different cultivation areas and crop seasons. In this study, two single segment substitution lines(SSSLs), W31-41-61-3-11-3-6-7(W31-SSSL) and W32-59-80-2-11-1-10(W32-SSSL) with substituted intervals derived from the donor parents IR66897 B(W31) and IR66167-27-5-1-6(W32), respectively, with Huajingxian 74(HTX74) were found to comprise a gene for extremely late-heading date, and the gene was tentatively designated as Hd-6-2. Two secondary F2 segregating populations were developed by crossing the two heterozygous SSSLs with HJX74 to map Hd-6-2 gene. According to phenotype analysis of the two mapping populations, the late heading date trait was controlled by a major recessive gene. In the segregation population derived from W31-SSSL, Hd-6-2 was mapped on chromosome 6 between PSM677 and RM204 with the genetic distances of 1.3 and 2.7 c M, respectively. In the population of W32-SSSL, the gene for heading date was mapped to the similar region as Hd-6-2 and co-segregated with PSM672. The sequence alignment of Hd3 a in the coding domains and promoter regions of HJX74 and W31-SSSL are completely consistent, whereas there was a great difference between W32-SSSL and HJX74, suggesting that Hd3 a could hardly be the main cause of the heading date variation in W31-SSSL, but it was probably the main reason for the change of heading stage in W32-SSSL.展开更多
Heading date of rice is a key agronomic trait determining cultivated areas and seasons and affecting yield. In the present study, ifve primary single segment substitution lines with the same genetic background were us...Heading date of rice is a key agronomic trait determining cultivated areas and seasons and affecting yield. In the present study, ifve primary single segment substitution lines with the same genetic background were used to detect quantitative trait loci (QTLs) for heading date in rice. Two QTLs, qHD3 and qHD6 on the short arm of chromosome 3 and the short arm of chromosome 6, respectively, were identiifed under natural long-day (NLD). Nineteen secondary single segment substitution lines (SSSLs) and seven double segments pyramiding lines were designed to map the two QTLs and to evaluate their epistatic interaction between them. By overlapping mapping, qHD3 was mapped in a 791-kb interval between SSR markers RM3894 and RM569 and qHD6 in a 1 125-kb interval between RM587 and RM225. Results revealed the existence of epistatic interaction between qHD3 and qHD6 under natural long-day (NLD). It was also found that qHD3 and qHD6 had signiifcant effects on plant height and yield traits, indicating that both of the QTLs have pleiotropic effects.展开更多
基金financially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFD0100903-9 and 2016YFD0100101-14)the Natural Science Foundation of Shandong Province (Grant No. ZR2014CQ007)the Rice Industry Technology Program of Shandong Province, China (Grant No. SDAIT-17-03)
文摘Heading date is one of the most important traits for rice adaption to different cultivation areas and crop seasons. In this study, two single segment substitution lines(SSSLs), W31-41-61-3-11-3-6-7(W31-SSSL) and W32-59-80-2-11-1-10(W32-SSSL) with substituted intervals derived from the donor parents IR66897 B(W31) and IR66167-27-5-1-6(W32), respectively, with Huajingxian 74(HTX74) were found to comprise a gene for extremely late-heading date, and the gene was tentatively designated as Hd-6-2. Two secondary F2 segregating populations were developed by crossing the two heterozygous SSSLs with HJX74 to map Hd-6-2 gene. According to phenotype analysis of the two mapping populations, the late heading date trait was controlled by a major recessive gene. In the segregation population derived from W31-SSSL, Hd-6-2 was mapped on chromosome 6 between PSM677 and RM204 with the genetic distances of 1.3 and 2.7 c M, respectively. In the population of W32-SSSL, the gene for heading date was mapped to the similar region as Hd-6-2 and co-segregated with PSM672. The sequence alignment of Hd3 a in the coding domains and promoter regions of HJX74 and W31-SSSL are completely consistent, whereas there was a great difference between W32-SSSL and HJX74, suggesting that Hd3 a could hardly be the main cause of the heading date variation in W31-SSSL, but it was probably the main reason for the change of heading stage in W32-SSSL.
基金financially supported by the National Natural Science Foundation of China (31171529)the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02-13)the Special Fund for Agro-Scientific Research in the Public Interest of China (201303007)
文摘Heading date of rice is a key agronomic trait determining cultivated areas and seasons and affecting yield. In the present study, ifve primary single segment substitution lines with the same genetic background were used to detect quantitative trait loci (QTLs) for heading date in rice. Two QTLs, qHD3 and qHD6 on the short arm of chromosome 3 and the short arm of chromosome 6, respectively, were identiifed under natural long-day (NLD). Nineteen secondary single segment substitution lines (SSSLs) and seven double segments pyramiding lines were designed to map the two QTLs and to evaluate their epistatic interaction between them. By overlapping mapping, qHD3 was mapped in a 791-kb interval between SSR markers RM3894 and RM569 and qHD6 in a 1 125-kb interval between RM587 and RM225. Results revealed the existence of epistatic interaction between qHD3 and qHD6 under natural long-day (NLD). It was also found that qHD3 and qHD6 had signiifcant effects on plant height and yield traits, indicating that both of the QTLs have pleiotropic effects.